The Use of Portable, Very Low-field (0.064T) MRI to Image Cochlear Implants: Metallic Image Artifact in Comparison to Traditional, Stationary 3T MRI

Author:

Munhall Christopher C.1,Roberts Donna R.2,Labadie Robert F.1

Affiliation:

1. Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina

2. Department of Radiology, Medical University of South Carolina, Charleston, South Carolina.

Abstract

Objective: To assess image artifact when imaging a cochlear implant (CI) with a conventional 3T MRI machine compared with a very low-field (0.064T) MRI. Patients: None. Intervention: Diagnostic study. Main Outcome Measure: Image artifact size associated with the CI affixed to an MRI phantom at very low-field 0.064T MRI versus 3T MRI. Results: The longest diameter of the image artifact was 125 mm for the 3T MRI and 86 mm for the 0.064T MRI, representing 45% longer image artifact generated in the 3T MRI. The actual volume of the imaging phantom was 1371 cm3. The volume of the image artifact was measured as 379 cm3 in the 3T MRI, representing a loss of 27.6% of the actual volume of the imaging phantom. The volume of image artifact was measured as 170 cm3 in the 0.064T MRI, representing a loss of 12.4% of the phantom volume. Conclusions: 3T MRI had better image quality. This result was not surprising given that larger magnetic field strength is known to provide higher resolution. There was 15% less image artifact generated in the very low-field MRI machine compared with a conventional 3T device. And there was also subjectively increased distortion of the imaging phantom at 3T MRI compared with the 0.064T MRI. With minimized safety concerns and a much lower cost than conventional 3T machines, very low-field scanners may find expanded clinical uses. This preclinical study explores the potential utility of very low-field MRI in scanning CI recipients.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3