Diagnostic significance and potential function of miR-320d in schizophrenia

Author:

Ren Fangfang1,Si Qi1,Sui Yuxiu1

Affiliation:

1. Department of Psychiatry, Nanjing Brain Hospital, Nanjing, China

Abstract

Schizophrenia is a chronic brain disorder and needs objective diagnostic biomarkers. MicroRNAs are highly expressed in the nervous system. The study investigated the expression and clinical values of serum miR-320d in schizophrenia patients. In addition, the underlying mechanism was preliminarily examined via bioinformatic analysis. Serum samples were collected from 57 patients with first-episode schizophrenia and 62 healthy controls. The cognitive function of patients was assessed via Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery (MCCB) consisting of seven domains. Serum miR-320d levels were tested via qRT-PCR. The miRNA target predictions were obtained from Target Scan, and annotated through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Based on the GSE167630 dataset, downregulated serum miR-320d in schizophrenia was identified, which was determined in the serum of schizophrenia patients. Serum miR-320d presented a conspicuous relationship with MCCB score in both the control group and the schizophrenia group. After adjusting for age, sex, BMI, and education, serum miR-320d was still independently related to the occurrence of schizophrenia. It can identify schizophrenia cases from healthy ones with an AUC of 0.931. The Go enrichment analysis indicated that the target genes were mainly enriched in homophilic cell adhesion and cell-cell adhesion via plasma-membrane adhesion molecules, and GTPase activity and guanosine diphosphate (GDP) binding. Rap1 signaling pathway was enriched via KEGG analysis. Serum miR-320d can be taken as a candidate marker for the diagnosis of schizophrenia. Its regulatory role in neuronal cell adhesion and Rap1 signaling pathway might be the potential underlying mechanism of miR-320d in schizophrenia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3