Locally Low-Rank Denoising of Multi-Echo Functional MRI Data With Application in Resting-State Analysis

Author:

Meyer Nolan K.1ORCID,Kang Daehun1,Ahmed Zaki12,In Myung-Ho1,Shu Yunhong1,Huston John1,Bernstein Matt A.1,Trzasko Joshua D.1

Affiliation:

1. Department of Radiology, Mayo Clinic, Rochester, MN

2. Radiology, Corewell Health William Beaumont University Hospital, Royal Oak, MI

Abstract

Abstract: Objectives: Locally low-rank (LLR) denoising of functional magnetic resonance imaging (fMRI) time series image data is extended to multi-echo (ME) data. The proposed method extends the capabilities of non-physiologic noise suppression beyond single-echo applications with a dedicated ME algorithm. Materials and Methods: Following an institutional review board (IRB) approved protocol, resting-state fMRI data were acquired in 7 healthy subjects. A compact 3T scanner enabled whole-brain acquisition of multiband ME fMRI data at high spatial resolution (1.4 × 1.4 × 2.8 mm3) with a 1810 ms repetition time (TR). Image data were denoised with ME-LLR preceding functional processing. The results of connectivity maps generated from denoised data were compared with maps generated with equivalent processing of non-denoised images. To assess ME-LLR as a method to reduce scan time, comparisons were made between maps computed from image data with full and retrospectively truncated durations. Assessments were completed with seed-based connectivity analyses using echo-combined image data. In a feasibility assessment, nondenoised and denoised full-duration echo-combined data were equivalently processed with independent component analysis (ICA) and compared. Results: ME-LLR denoising yielded strengthened resting-state network connectivity maps after nuisance regression and seed-based connectivity analysis. In assessing ME-LLR as a scan reduction mechanism, maps generated from denoised data at half scan time showed comparable quality with maps generated from full-duration, non-denoised data, at both single subject and group levels. ME-LLR substantially increased temporal signal-to-noise ratio (tSNR) for image data respective to each individual echo and for image data after nuisance regression. Among echo-specific image volumes, increases in tSNR yielded by ME-LLR were most pronounced for image data with the longest echo time and thereby lowest SNR. ICA showed resting-state networks consistently identified between non-denoised and denoised data, with clearer demarcation of networks for ME-LLR. Conclusions: ME-LLR is demonstrated to suppress non-physiologic noise, enhance functional connectivity map quality, and could potentially facilitate scan time reduction in ME-fMRI.

Funder

National Institutes of Health

National Science Foundation Graduate Research Fellowship Program

Mayo Clinic Graduate School of Biomedical Sciences

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3