Assessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence–Derived Morphometric Parameters From Specular Microscopy Images

Author:

Prada Angelica M.123,Quintero Fernando4,Mendoza Kevin4,Galvis Virgilio123,Tello Alejandro1235,Romero Lenny A.6,Marrugo Andres G.4ORCID

Affiliation:

1. Centro Oftalmológico Virgilio Galvis, Floridablanca, Colombia;

2. Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia;

3. Facultad de Salud, Universidad Autónoma de Bucaramanga UNAB, Bucaramanga, Colombia;

4. Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena, Colombia;

5. Facultad de Salud, Universidad Industrial de Santander UIS, Bucaramanga, Colombia; and

6. Facultad de Ciencias Básicas, Universidad Tecnológica de Bolívar, Cartagena, Colombia.

Abstract

Purpose: The aim of this study was to evaluate the efficacy of artificial intelligence–derived morphometric parameters in characterizing Fuchs corneal endothelial dystrophy (FECD) from specular microscopy images. Methods: This cross-sectional study recruited patients diagnosed with FECD, who underwent ophthalmologic evaluations, including slit-lamp examinations and corneal endothelial assessments using specular microscopy. The modified Krachmer grading scale was used for clinical FECD classification. The images were processed using a convolutional neural network for segmentation and morphometric parameter estimation, including effective endothelial cell density, guttae area ratio, coefficient of variation of size, and hexagonality. A mixed-effects model was used to assess relationships between the FECD clinical classification and measured parameters. Results: Of 52 patients (104 eyes) recruited, 76 eyes were analyzed because of the exclusion of 26 eyes for poor quality retroillumination photographs. The study revealed significant discrepancies between artificial intelligence–based and built-in microscope software cell density measurements (1322 ± 489 cells/mm2 vs. 2216 ± 509 cells/mm2, P < 0.001). In the central region, guttae area ratio showed the strongest correlation with modified Krachmer grades (0.60, P < 0.001). In peripheral areas, only guttae area ratio in the inferior region exhibited a marginally significant positive correlation (0.29, P < 0.05). Conclusions: This study confirms the utility of CNNs for precise FECD evaluation through specular microscopy. Guttae area ratio emerges as a compelling morphometric parameter aligning closely with modified Krachmer clinical grading. These findings set the stage for future large-scale studies, with potential applications in the assessment of irreversible corneal edema risk after phacoemulsification in FECD patients, as well as in monitoring novel FECD therapies.

Funder

Departamento Administrativo de Ciencia, TecnologÃ‐a e InnovaciÃn

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3