Corneal Endothelium Viability Assay Using Trypan Blue Dye After Preloaded DMEK Graft Preparation

Author:

Szkarlat Michael R.1,Hicks Nicholas1,Titus Michael S.1,Sawant Onkar B.12

Affiliation:

1. Department of Clinical Operations, Eversight, Ann Arbor, MI; and

2. Center for Vision and Eye Banking Research, Eversight, Cleveland, OH.

Abstract

Purpose: The purpose of this study was to establish a validated method, consistent with Eye Bank Association of America medical standards, for evaluating endothelial cell loss (ECL) from an entire Descemet membrane endothelial keratoplasty (DMEK) graft using trypan blue dye as an alternative to specular microscopy. Method: Twenty-nine corneas were prepared for preloaded DMEK by a single technician, and the endothelium was stained with trypan blue dye for 30 seconds. The technician estimated total cell loss as a percentage of the graft and captured an image. Images were evaluated by a blinded technician using ImageJ software to determine ECL and compared with endothelial cell density from specular microscopy. Tissue processing intervals were analyzed for 4 months before and after implementation of this method. Results: For the 29 grafts, there was no statistically significant difference (t test, P = 0.285) between ECL estimated by a processor (mean = 5.8%) and ECL calculated using an ImageJ software (mean = 5.1%). The processor tended to estimate greater ECL than the actual ECL determined by ImageJ (paired t test, P = 0.022). Comparatively, postprocessing endothelial cell density measured by specular microscopy were higher compared with the preprocessing endothelial cell density (mean = 4.5% P = 0.0006). After implementation of this evaluation method, DMEK graft processing time intervals were reduced by 47.9% compared with specular microscopy evaluation (P < 0.001). Conclusions: Our results show that visual ECL estimation using trypan blue staining by a DMEK graft processor is a reliable and efficient method for endothelial assessment. Unlike specular microscopy, this method achieves comprehensive visualization of the entire endothelium, reduces total time out of cold storage, and decreases total time required to prepare and evaluate DMEK grafts.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3