Noninvasive Evaluation of Acupuncture-Induced Cortical Plasticity in Advanced Rehabilitation of Facial Paralysis

Author:

Yu Li-qing1,Ma Hao2,Cao Lian-ying1,Zhou Yu-lu2

Affiliation:

1. Department of Acupuncture, Shanghai Changning Tianshan Traditional Chinese Medicine Hospital

2. Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract

Objective: Facial paralysis (FP), which resulted from head and neck cancer resection, significantly impacts patients’ quality of life. Traditional assessments rely on subjective evaluations and electromyography, whereas functional magnetic resonance imaging offers a noninvasive alternative for enhanced rehabilitation. Acupuncture has shown promise in promoting cerebral cortex reorganization, yet the precise relationship between acupuncture-induced structural and functional changes remains unclear, necessitating further investigation into therapeutic mechanisms. Methods: Fifty-five patients afflicted with FP underwent evaluations using voxel-mirrored homotopic connectivity (VMHC) and tract-based spatial statistics and were divided into the acupuncture intervention group (n = 35) and pseudo intervention group (n = 20). Comparative analyses of metrics pre and postintervention were conducted to delineate therapy-induced modifications in acupuncture intervention. The postacupuncture effect between groups to verify the necessity of accurate positioning for the rehabilitation of FP. Results: Patients with FP showed deficits in VMHC in regions of the postcentral, precentral, and parietal areas. Corpus callosum and internal capsule showed significantly increased fractional anisotropy of the white matter skeleton in tract-based spatial statistics after treatment. Comparison postintervention results between groups exhibited deficits in VMHC and increased fractional anisotropy in regions of the corpus callosum in the acupuncture intervention group. Conclusions: Early acupuncture intervention may suppress cortical hyperactivation and restore interhemispheric inhibition across the corpus callosum to inhibit maladaptive structural plasticity. Precise acupoint localization is crucial for effective therapy, highlighting the potential of postacupuncture cortical space data for refining therapeutic strategies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3