Investigation of the Effects of Thymoquinone and Dental Pulp-Derived Mesenchymal Stem Cells on Tibial Bone Defect Models

Author:

Ozden Ersin1,Kaya Beyza2,Guler Ridvan2

Affiliation:

1. Department of Oral and Maxillofacial Surgery, Ministry of Health, Oral and Dental Health Hospital, Samsun

2. Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Dicle University, Diyarbakir, Turkiye

Abstract

The thymoquinone obtained from Nigella sativa increases osteoblastic activity and significantly reduces the number of osteoclasts, thereby accelerating bone healing. In addition, mesenchymal stem cells isolated from various tissues are considered a potential cell source for bone regenerative therapies. The aim of this study is to investigate the effectiveness of thymoquinone, a current and novel agent, in combination with mesenchymal stem cells derived from the dental pulp in promoting bone healing. In the study, 28 male Sprague Dawley rats were used. The rats were divided into 4 groups, each consisting of 7 rats: the control group (group 1) (n=7), thymoquinone group (group 2) (n=7), stem cell group (group 3) (n=7), stem cell+thymoquinone group (group 4) (n=7). A bone defect of 4 mm in diameter and 5 mm in length was created in the left tibial bones of all rats with a trephine bur. In group 1, no procedure was applied to the defect area. Group 2 was applied thymoquinone (10 mg/kg) with oral gavage. In group 3, stem cells were used locally to the defect area. In group 4, stem cells and thymoquinone (10 mg/kg) was applied to the defect area. All rats were killed on the 28th day of the experiment. Tibia tissues extracted during sacrifice were histomorphologically examined in a fixative solution. Significant differences were found in terms of new bone formation and osteoblastic activity values in the “thymoquinone” (P<0.05), “stem cell” (P<0.05), and “stem cell+thymoquinone” (P<0.05) groups compared to the “control” group. In addition, while there was no significant difference in the “thymoquinone” group compared to these stem cell+thymoquinone group in terms of osteoblastic activity (P>0.05), the difference in terms of new bone formation was found to be significantly lower. No significant differences among the other groups were observed in new bone formation and osteoblastic activity (P>0.05). According to the results of our study, stem cell+thymoquinone treatment for bone defects is not only more effective than thymoquinone or stem cell treatment alone but also induces greater development of bone trabeculae, contributes to the matrix and connective tissue formation, and increases the number of osteoblasts and osteocytes involved in bone formation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3