Affiliation:
1. Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
2. Department of Biomedical and Surgical and Biomedical Sciences, Catania University, Catania, Italy
3. Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania, Luigi Vanvitelli, Naples, Italy
Abstract
Background:
Acute myocardial infarction (AMI) risk correlates with C-reactive protein (CRP) levels, suggesting systemic inflammation is present well before AMI. Studying different types of periodontal disease (PD), extremely common in individuals at risk for AMI, has been one important research topic. According to recent research, AMI and PD interact via the systemic production of certain proinflammatory and anti-inflammatory cytokines, small signal molecules, and enzymes that control the onset and development of both disorders’ chronic inflammatory reactions. This study uses machine learning to identify the interactome hub biomarker genes in acute myocardial infarction and periodontitis.
Methods:
GSE208194 and GSE222883 were chosen for our research after a thorough search using keywords related to the study’s goal from the gene expression omnibus (GEO) datasets. DEGs were identified from the GEOR tool, and the hub gene was identified using Cytoscape-cytohubba. Using expression values, Random Forest, Adaptive Boosting, and Naive Bayes, widgets-generated transcriptomics data, were labelled, and divided into 80/20 training and testing data with cross-validation. ROC curve, confusion matrix, and AUC were determined. In addition, Functional Enrichment Analysis of Differentially Expressed Gene analysis was performed.
Results:
Random Forest, AdaBoost, and Naive Bayes models with 99%, 100%, and 75% AUC, respectively. Compared to RF, AdaBoost, and NB classification models, AdaBoost had the highest AUC. Categorization algorithms may be better predictors than important biomarkers.
Conclusions:
Machine learning model predicts hub and non-hub genes from genomic datasets with periodontitis and acute myocardial infarction.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献