Development and Preliminary Evaluation of A Soft Tissue Microtia Simulator

Author:

Lanser Charlotte1,Fisher David M.2,Kasrai Leila3,Fisher Keon2,Podolsky Dale J.24

Affiliation:

1. Erasmus University Rotterdam, Rotterdam, The Netherlands

2. Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children

3. Division of Plastic Surgery, St Josephs Health Center

4. Posluns Center for Image Guided Innovation and Therapeutic Intervention (PCIGITI), Toronto, Ontario, Canada

Abstract

Surgical simulation has been used extensively for learning microtia reconstruction and has almost exclusively involved framework creation. However, soft tissue reconstruction in microtia is equally challenging and would benefit from a simulation platform. This study aimed to describe the development and preliminary evaluation of a high-fidelity soft tissue microtia simulator. Three-dimensional modeling software, fused deposition 3-dimensional printing, adhesive techniques, silicones, and polyurethane rubbers were utilized to create a right lobular-type microtia simulator that comprises skin, subcutaneous tissue, and cartilage. Two expert microtia surgeons performed a microtia reconstruction on the simulator and evaluated its value and realism using a Likert-type questionnaire. The surgeons utilized a previously developed synthetic framework and successfully performed the critical steps of the soft tissue reconstruction, including marking, incising, dissection, removal of the cartilage remnant, drain insertion, insertion of the framework, closing of the skin, and demonstration of the soft tissue conforming over the framework using suction. A preliminary assessment of the simulator demonstrated that the simulator is anatomically accurate, realistic, and highly valuable as a training tool. A high-fidelity soft tissue microtia simulator was successfully developed and tested. The simulator provides a valuable training platform for learning a critical component of microtia reconstruction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3