Puncture and Drainage Surgery for Intracerebral Hemorrhage Guided by 3D Printing Puncture Guide Plate

Author:

Kang Shengyu1,Zhao Chengle2,Fan Yifeng1

Affiliation:

1. School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China

2. Department of Neurosurgery, Zhenping People’s Hospital, Nanyang, China

Abstract

Objectives: Accurate puncture is the key to ensure the effect of puncture and drainage surgery for intracerebral hemorrhage. It usually uses CT to guide the drainage tube to reach the center of the hematoma cavity, which has the problems of inaccurate positioning using 2D images and high requirements for surgeon’s experience in brain anatomy and imaging diagnosis. The aim of this study was to use a 3D printing puncture guide plate to guide the puncture and drainage surgery for intracerebral hemorrhage. Methods: The CT images were imported into 3D Slicer software to reconstruct 3D models of the head skin and intracerebral hematoma. The target was set in the center of the hematoma and the puncture path from the target to the entry point was designed, the 3D model of puncture guide plate was constructed and saved as stereolithography format file, which was imported into 3D printer to print. During surgery, the drainage tube was placed in the center of the hematoma guided by the 3D printing puncture guide plate, and the blood clot was extracted by the suction syringe. Results: Eight patients with hypertensive intracerebral hemorrhage were treated with puncture and drainage surgery guided by 3D printing puncture guide plate. The average operation time of the 8 surgeries was 17.63 minutes. The drainage tubes were all precisely placed in the center of the hematoma, and the blood clots were all successfully extracted. The positioning errors of the 8 drainage tubes were between 1.76 mm and 2.68 mm, and the mean value was 2.10±0.32 mm. The hematoma clearance rate of the 8 patients was between 74.18% and 96.73%, and the mean value was 85.14±6.71%. Conclusions: The puncture and drainage surgery for intracerebral hemorrhage guided by 3D printing puncture guide plate helps to quickly and effortlessly localize intracerebral hematoma and achieves satisfactory hematoma clearance rate.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3