Transportability Without Positivity: A Synthesis of Statistical and Simulation Modeling

Author:

Zivich Paul N.12ORCID,Edwards Jessie K.2,Lofgren Eric T.3,Cole Stephen R.2,Shook-Sa Bonnie E.4,Lessler Justin156

Affiliation:

1. Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC

2. Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC

3. Paul G. Allen School for Global Health, Washington State University, Pullman, WA

4. Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC

5. Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC

6. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.

Abstract

Studies designed to estimate the effect of an action in a randomized or observational setting often do not represent a random sample of the desired target population. Instead, estimates from that study can be transported to the target population. However, transportability methods generally rely on a positivity assumption, such that all relevant covariate patterns in the target population are also observed in the study sample. Strict eligibility criteria, particularly in the context of randomized trials, may lead to violations of this assumption. Two common approaches to address positivity violations are restricting the target population and restricting the relevant covariate set. As neither of these restrictions is ideal, we instead propose a synthesis of statistical and simulation models to address positivity violations. We propose corresponding g-computation and inverse probability weighting estimators. The restriction and synthesis approaches to addressing positivity violations are contrasted with a simulation experiment and an illustrative example in the context of sexually transmitted infection testing uptake. In both cases, the proposed synthesis approach accurately addressed the original research question when paired with a thoughtfully selected simulation model. Neither of the restriction approaches was able to accurately address the motivating question. As public health decisions must often be made with imperfect target population information, model synthesis is a viable approach given a combination of empirical data and external information based on the best available knowledge.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3