Affiliation:
1. Section of Plastic and Reconstructive Surgery, University of Michigan Health System
2. Section of Plastic Surgery, Department of Surgery, University of Michigan Medical School.
Abstract
Summary:
Understanding causal association and inference is critical to study health risks, treatment effectiveness, and the impact of health care interventions. Although defining causality has traditionally been limited to rigorous, experimental contexts, techniques to estimate causality from observational data are highly valuable for clinical questions in which randomization may not be feasible or appropriate. In this review, the authors highlight several methodologic options to deduce causality from observational data, including regression discontinuity, interrupted time series, and difference-in-differences approaches. Understanding the potential applications, assumptions, and limitations of quasi-experimental methods for observational data can expand our interpretation of causal relationships for surgical conditions.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献