Irradiation affects adipose-derived stem cells and wound healing depending on radiation dose and frequency

Author:

Asahi Rintaro1,Sunaga Ataru1,Shirado Takako1,Saito Natsumi1,Mori Masanori1,Yamamoto Yoshihiro1,Wu Yunyan1,Yoshimura Kotaro1

Affiliation:

1. Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, 329-0498, Tochigi, Japan

Abstract

Background: Radiation therapies are often associated with permanent devitalization in the surrounding tissue. We hypothesized that stem cells are damaged depending on each irradiation dose and frequency of fractionated radiotherapies, which results in impaired tissue function including wound healing capacity. Methods: To test the hypothesis, susceptibility of human adipose-derived stem cells (ASCs) to a single irradiation (0–10 Gy) was assessed in vitro. In vivo chronic radiation effects were also assessed on the mouse dorsal skin (N=4-5) for 6 months after a total of 40 Gy irradiation (0 Gy as control) using one of three fractionated protocols (2 Gy daily for 20 days, 10 Gy weekly for 4 weeks, or 10 Gy monthly for 4 months). Oxygen partial pressure, oxygen saturation of hemoglobin, and dorsal skin viscoelasticity were periodically measured, and wound healing and tissue immunohistology were compared at 6 months. Results: A single irradiation of cultured human ASCs resulted in a dose-dependent increase in cell death up to 2 Gy but with no further increases between 2 and 10 Gy. Most of the apoptotic ASCs were in the proliferation phase. Among the three in vivo irradiation protocols, the 2 Gy×20 group had the most severe chronic tissue damage (i.e., skin dysfunction, subcutaneous atrophy, and depletion of CD34+ stem cells) 6 months after the irradiation. Wound healing was also impaired most significantly in the 2 Gy×20 group. Conclusions: These results have important clinical implications for surgeons and radiotherapists such as the timing of surgical interventions and the optimization of fractionation protocols. Clinical Relevance Statement: Irradiation damages stem cells depending on the radiation dose and frequency. Using the ultimately optimized protocol, we can minimize the long-term functional deficits of radiated tissue without losing anti-cancer efficacy of radiation therapy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3