“Hydrogen-generating Si-based agent improves fat graft survival in rats”

Author:

Otani Naoya1,Tomita Koichi12,Kobayashi Yuki3,Kuroda Kazuya1,Kobayashi Hikaru3,Kubo Tateki1

Affiliation:

1. Department of Plastic Surgery, Osaka University Graduate School of Medicine; Osaka, Japan

2. Department of Plastic and Reconstructive Surgery, Kindai University Faculty of Medicine; Osaka, Japan

3. Institute of Scientific and Industrial Research, Osaka University; Osaka, Japan

Abstract

Background: Regulating excessive inflammation and oxidative stress in fat grafting may improve retention rates. Hydrogen effectively combats oxidative stress and inflammation and reportedly inhibits ischemia-reperfusion injury in various organs. Unfortunately, with conventional methods of hydrogen administration, incorporating hydrogen continuously into the body over a long period of time is difficult. We hypothesized that a Silicon (Si)-based agent we recently developed would aid in fat grafting as it can generate large amounts of hydrogen continuously in the body. Methods: Fat grafting was performed on the backs of rats fed either a normal or 1.0 wt% Si-based agent-containing diet. To investigate synergistic effects with adipose-derived stromal cells (ASCs), which improve retention rates of fat grafting, fat grafting with ASCs (1.0×10 5/400 mg fat) was also performed in each rat. Postoperative retention rates of grafted fat over time, inflammatory indices, apoptosis and oxidative stress markers, histological findings, and expression levels of inflammation-related cytokines and growth factors were compared between the four groups. Results: Intake of Si-based agent and addition of ASCs significantly reduced inflammatory indices, oxidative stress, and apoptosis of grafted fat, and improved long-term retention rates, histological parameters, and grafted fat quality. Under our experimental conditions, intake of the Si-based agent and addition of ASCs yielded comparable improvements in fat graft retention. Combining the two enhanced these effects even further. Conclusion: Oral administration of the hydrogen-generating Si-based agent may improve grafted fat retention by regulating the inflammatory response and oxidative stress in grafted fat. Clinical Relevance Statement: This study demonstrates improved grafted fat retention rates using a Si-based agent. This Si-based agent has the potential to expand the range of therapeutic indications of hydrogen-based therapy to conditions for which hydrogen has yet to be found effective, such as fat grafting.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3