Automatic Detection of Perilunate and Lunate Dislocations on Wrist Radiographs Using Deep Learning

Author:

Pridgen Brian12,von Rabenau Lisa3,Luan Anna1,Gu Angela J.3,Wang David S.4,Langlotz Curtis4,Chang James1,Do Bao4

Affiliation:

1. Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California

2. The Buncke Clinic, San Francisco, California

3. Stanford University School of Engineering, Stanford, California

4. Department of Radiology, Stanford University School of Medicine, Stanford, California

Abstract

Summary: Delayed or missed diagnosis of perilunate or lunate dislocations can lead to significant morbidity. Advances in computer vision provide an opportunity to improve diagnostic performance. In this study, a deep learning algorithm was utilized for detection of perilunate and lunate dislocations on lateral wrist radiographs. A total of 435 lateral wrist radiographs were labeled as normal or pathologic (perilunate or lunate dislocation). The lunate in each radiograph was segmented with a rectangular bounding box. Images were partitioned into training and test sets. Two neural networks, consisting of an object detector followed by an image classifier, were applied in series. First, the object detection module was used to localize the lunate. Next, the image classifier performed a binary classification for normal or pathologic. The accuracy, sensitivity, and specificity of the overall system were evaluated. A receiver operating characteristic (ROC) curve and the associated area under the curve (AUC) were used to demonstrate the overall performance of the computer vision algorithm. The lunate object detector was 97.0% accurate at identifying the lunate. Accuracy was 98.7% among the sub-group of normal wrist radiographs, and 91.3% among the sub-group of wrist radiographs with perilunate/lunate dislocations. The perilunate/lunate dislocation classifier had a sensitivity (recall) of 93.8%, specificity of 93.3%, and accuracy of 93.4%. The AUC was 0.986. We have developed a proof-of-concept computer vision system for diagnosis of perilunate/lunate dislocations on lateral wrist radiographs. This novel deep learning algorithm has potential to improve clinical sensitivity to ultimately prevent delayed or missed diagnosis of these injuries.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3