Metabolic signatures in pancreatic ductal adenocarcinoma: diagnostic and therapeutic implications

Author:

Gong Ruining12,Hu Yonglu3,Yu Qian1,Fang Lin4,Ren He1

Affiliation:

1. Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China

2. Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China

3. Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China

4. Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the prototypical aggressive cancer that develops in nutrient-deficient and hypoxic microenvironment. PDAC overcomes these restrictions by employing unconventional tactics for the procurement and usage of fuel sources. The substantial reprogramming of PDAC cell metabolism is driven by oncogene-mediated cell-autonomous pathways. PDAC cells use glucose, glutamine, and lipids for energy and depend on autophagy and macropinocytosis for survival and growth. They also interact metabolically with non-cancerous cells, aiding tumor progression. Many clinical trials focusing on altered metabolism are ongoing. Understanding the metabolic regulation of PDAC cells will not only help to increase understanding of the mechanisms of disease progression but also provide insights for the development of new diagnostic and therapeutic approaches.

Funder

National Science Fund for National Natural Science Foundation of China

Taishan Scholars Program of Shandong Province

Major State Basic Research Development Program of Natural Science Foundation of Shandong Province in China

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Endocrinology,Hepatology,Endocrinology, Diabetes and Metabolism

Reference166 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3