Using Machine Learning (ML) Models to Predict Risk of Venous Thromboembolism (VTE) Following Spine Surgery

Author:

Katiyar Prerana1,Chase Herbert2,Lenke Lawrence G.23,Weidenbaum Mark23,Sardar Zeeshan M.23

Affiliation:

1. Columbia University Vagelos College of Physicians and Surgeons

2. Columbia University Irving Medical Center

3. Och Spine Hospital at New York Presbyterian, New York, NY

Abstract

Study Design: A retrospective cohort study. Objectives: Venous thromboembolism (VTE) is a potentially high-risk complication for patients undergoing spine surgery. Although guidelines for assessing VTE risk in this population have been established, development of new techniques that target different aspects of the medical history may prove to be of further utility. The goal of this study was to develop a predictive machine learning (ML) model to identify nontraditional risk factors for predicting VTE in spine surgery patients. Summary of Background Data: A cohort of 63 patients was identified who had undergone spine surgery at a single center from 2015 to 2021. Thirty-one patients had a confirmed VTE, while 32 had no VTE. A total of 113 attributes were defined and collected via chart review. Attribute categories included demographics, medications, labs, past medical history, operative history, and VTE diagnosis. Methods: The Waikato Environment for Knowledge Analysis (WEKA) software was used in creating and evaluating the ML models. Six classifier models were tested with 10-fold cross-validation and statistically evaluated using t tests. Results: Comparing the predictive ML models to the control model (ZeroR), all predictive models were significantly better than the control model at predicting VTE risk, based on the 113 attributes (P<0.001). The Random Forest model had the highest accuracy of 88.89% with a positive predictive value of 93.75%. The Simple Logistic algorithm had an accuracy of 84.13% and defined risk attributes to include calcium and phosphate laboratory values, history of cardiac comorbidity, history of previous VTE, anesthesia time, selective serotonin reuptake inhibitor use, antibiotic use, and antihistamine use. The J48 model had an accuracy of 80.95% and it defined hemoglobin laboratory values, anesthesia time, beta-blocker use, dopamine agonist use, history of cancer, and Medicare use as potential VTE risk factors. Conclusion: Further development of these tools may provide high diagnostic value and may guide chemoprophylaxis treatment in this setting of high-risk patients.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3