Biomechanics of Cervical Disk Replacement

Author:

Yee Timothy J.1,Mummaneni Praveen V.2

Affiliation:

1. Department of Neurosurgery, University of Michigan, Ann Arbor, MI

2. Department of Neurological Surgery, University of California-San Francisco, San Francisco, CA

Abstract

Cervical disk arthroplasty has been employed with increased frequency over the past 2 decades as a motion-preserving alternative to anterior cervical discectomy and fusion in select patients with myelopathy or radiculopathy secondary to degenerative disk disease. As indications continue to expand, an understanding of cervical kinematics and materials science is helpful for optimal implant selection. Cervical disk arthroplasty implants can be classified according to the mode of articulation and df, articulation material, and endplate construction. The incorporation of translational and rotational df allows the implant to emulate the dynamic and coupled centers of movement in the cervical spine. Durable and low-friction interfaces at the articulation sustain optimal performance and minimize particulate-induced tissue reactions. Endplate materials must facilitate osseous integration to ensure implant stability after primary fixation. These cardinal considerations underlie the design of the 9 implants currently approved by the FDA and serve as the foundation for further biomimetic research and development.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3