Can Patient-centered Education and Pain Management Delivered by Coaches Improve Pain Outcomes After Orthopaedic Trauma? A Randomized Trial

Author:

Giordano Nicholas A.1ORCID,Und Aspang Jesse Seilern2ORCID,Baker J’Lynn3,Holder Carter45ORCID,Cantu Nicholas2,Checo Grace2ORCID,Rice Cammie Wolf4,Barrell Bailey45,Wallace Michelle5,Steck Alaina R.56,Schenker Mara L.25

Affiliation:

1. Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA

2. Department of Orthopaedics, School of Medicine, Emory University, Atlanta, GA, USA

3. Mercer University School of Medicine, Macon, GA, USA

4. Christopher Wolf Crusade, Atlanta, GA, USA

5. Grady Memorial Hospital, Atlanta, GA, USA

6. Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, USA

Abstract

Background Pain after orthopaedic trauma is complex, and many patients who have experienced orthopaedic trauma are at increased risk for prolonged opioid utilization after the injury. Patient-centered interventions capable of delivering enhanced education and opioid-sparing pain management approaches must be implemented and evaluated in trauma care settings to improve pain outcomes and minimize opioid-related risks. Questions/purposes Does personalized pain education and management delivered by coaches (1) improve pain-related outcomes, (2) reduce opioid consumption, and (3) improve patient-reported outcome measures (Patient-Reported Outcomes Measurement Information System [PROMIS] scores) compared to written discharge instructions on pain management and opioid safety? Methods This clinical trial aimed to examine the effect of a personalized pain education and management intervention, delivered by paraprofessional coaches, on pain-related outcomes and opioid consumption compared with usual care (written discharge instructions on pain management and opioid safety). Between February 2021 and September 2022, 212 patients were randomized to the intervention (49% [104]) or control group (51% [108]). A total of 31% (32 of 104) and 47% (51 of 108) in those groups, respectively, were lost before the minimum study follow-up of 12 weeks or had incomplete datasets, leaving 69% (72 of 104) and 53% (57 of 108) for analysis in the intervention and control group, respectively. Patients randomized to the intervention worked with the paraprofessional coaches throughout hospitalization after their orthopaedic injury and at their 2-, 6-, and 12-week visits with the surgical team after discharge to implement mindfulness-based practices and nonpharmacological interventions. Most participants in the final sample of 129 identified as Black (73% [94 of 129]) and women (56% [72 of 129]), the mean Injury Severity score was 8 ± 4, and one-third of participants were at medium to high risk for an opioid-use disorder based on the Opioid Risk Tool. Participants completed surveys during hospitalization and at the 2-, 6-, and 12-week follow-up visits. Surveys included average pain intensity scores over the past 24 hours measured on the pain numeric rating scale from 0 to 10 and PROMIS measures (physical functioning, pain interference, sleep disturbance). Opioid utilization, measured as daily morphine milligram equivalents, was collected from the electronic health record, and demographic and clinical characteristics were collected from self-report surveys. Groups were compared in terms of mean pain scores at at the 12-week follow-up, daily morphine milligram equivalents both during inpatient and at discharge, and mean PROMIS scores at 12 weeks of follow-up. Additionally, differences in the proportion of participants in each group achieving minimum clinically important differences (MCID) on pain and PROMIS scores were examined. For pain scores, an MCID of 2 points on the pain numeric rating scale assessing past 24-hour pain intensity was utilized. Results We found no difference between the intervention and control in terms of mean pain score at 12 weeks nor in the proportions of patients who achieved the MCID of 2 points for 24-hour average pain scores (85% [61 of 72] versus 72% [41 of 57], respectively, OR 2.2 [95% confidence interval (CI) 0.9 to 5.3]; p = 0.08). No differences were noted in daily morphine milligram equivalents utilized between the intervention and control groups during hospitalization, at discharge, or in prescription refills. Similarly, we observed no differences in the proportions of patients in the intervention and control groups who achieved the MCID on PROMIS Physical Function (81% [58 of 72] versus 63% [36 of 57], respectively, OR 2.2 [95% CI 0.9 to 5.2]; p = 0.06). We saw no differences in the proportions of patients who achieved the MCID on PROMIS Sleep Disturbance between the intervention and control groups (58% [42 of 72] versus 47% [27 of 57], respectively, OR 1.4 [95% CI 0.7 to 3.0]; p = 0.31). The proportion of patients who achieved the MCID on PROMIS Pain Interference scores did not differ between the intervention and the control groups (39% [28 of 72] versus 37% [21 of 57], respectively, OR 1.1 [95% CI 0.5 to 2.1]; p = 0.95). Conclusion In this trial, we observed no differences between the intervention and control groups in terms of pain outcomes, opioid medication utilization, or patient-reported outcomes after orthopaedic trauma. However, future targeted research with diverse samples of patients at increased risk for poor postoperative outcomes is warranted to ascertain a potentially meaningful patient perceived effect on pain outcomes after working with coaches. Other investigators interested in this interventional approach may consider the coach program as a framework at their institutions to increase access to evidence-based nonpharmacological interventions among patients who are at increased risk for poor postoperative pain outcomes. Smaller, more focused programs connecting patients to coaches to learn about nonpharmacological pain management interventions may deliver a larger impact on patient’s recovery and outcomes. Level of Evidence Level I, therapeutic study.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference51 articles.

1. Long-term outcomes of persistent post-operative opioid use: a retrospective cohort study;Aalberg;Ann Surg,2022

2. Development of a PROMIS item bank to measure pain interference;Amtmann;Pain,2010

3. Clinical validity of PROMIS® pain interference and pain behavior in diverse clinical populations;Askew;J Clin Epidemiol.,2016

4. The injury severity score: an update;Baker;J Trauma,1976

5. Improving pain management and long-term outcomes following high-energy orthopaedic trauma (pain study);Castillo;J Orthop Trauma,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3