Does Preoperative Pharmacogenomic Testing of Patients Undergoing TKA Improve Postoperative Pain? A Randomized Trial

Author:

Kraus Molly B.1ORCID,Bingham Joshua S.2,Kekic Adrijana3,Erickson Colby4,Grilli Christopher B.3,Seamans David P.1,Upjohn David P.5,Hentz Joseph G.6,Clarke Henry D.2,Spangehl Mark J.2

Affiliation:

1. Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA

2. Department of Orthopedic Surgery, Mayo Clinic, Phoenix, AZ, USA

3. Department of Pharmacy, Mayo Clinic, Phoenix, AZ, USA

4. Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA

5. Center for Regenerative Biotherapeutics, Mayo Clinic, Phoenix, AZ, USA

6. Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ, USA

Abstract

Abstract Background Pharmacogenomics is an emerging and affordable tool that may improve postoperative pain control. One challenge to successful pain control is the large interindividual variability among analgesics in their efficacy and adverse drug events. Whether preoperative pharmacogenomic testing is worthwhile for patients undergoing TKA is unclear. Questions/purposes (1) Are the results of preoperative pharmacogenetic testing associated with lower postoperative pain scores as measured by the Overall Benefit of Analgesic Score (OBAS)? (2) Do the results of preoperative pharmacogenomic testing lead to less total opioids given? (3) Do the results of preoperative pharmacogenomic testing lead to changes in opioid prescribing patterns? Methods Participants of this randomized trial were enrolled from September 2018 through December 2021 if they were aged 18 to 80 years and were undergoing primary TKA under general anesthesia. Patients were excluded if they had chronic kidney disease, a history of chronic pain or narcotic use before surgery, or if they were undergoing robotic surgery. Preoperatively, patients completed pharmacogenomic testing (RightMed, OneOME) and a questionnaire and were randomly assigned to the experimental group or control group. Of 99 patients screened, 23 were excluded, one before randomization; 11 allocated patients in each group did not receive their allocated interventions for reasons such as surgery canceled, patients ultimately undergoing spinal anesthesia, and change in surgery plan. Another four patients in each group were excluded from the analysis because they were missing an OBAS report. This left 30 patients for analysis in the control group and 38 patients in the experimental group. The control and experimental groups were similar in age, gender, and race. Pharmacogenomic test results for patients in the experimental group were reviewed before surgery by a pharmacist, who recommended perioperative medications to the clinical team. A pharmacist also assessed for clinically relevant drug-gene interactions and recommended drug and dose selection according to guidelines from the Clinical Pharmacogenomics Implementation Consortium for each patient enrolled in the study. Patients were unaware of their pharmacogenomic results. Pharmacogenomic test results for patients in the control group were not reviewed before surgery; instead, standard perioperative medications were administered in adherence to our institutional care pathways. The OBAS (maximum 28 points) was the primary outcome measure, recorded 24 hours postoperatively. A two-sample t-test was used to compare the mean OBAS between groups. Secondary measures were the mean 24-hour pain score, total morphine milligram equivalent, and frequency of opioid use. Postoperatively, patients were assessed for pain with a VAS (range 0 to 10). Opioid use was recorded preoperatively, intraoperatively, in the postanesthesia care unit, and 24 hours after discharge from the postanesthesia care unit. Changes in perioperative opioid use based on pharmacogenomic testing were recorded, as were changes in prescription patterns for postoperative pain control. Preoperative characteristics were also compared between patients with and without various phenotypes ascertained from pharmacogenomic test results. Results The mean OBAS did not differ between groups (mean ± SD 4.7 ± 3.7 in the control group versus 4.2 ± 2.8 in the experimental group, mean difference 0.5 [95% CI -1.1 to 2.1]; p = 0.55). Total opioids given did not differ between groups or at any single perioperative timepoint (preoperative, intraoperative, or postoperative). We found no difference in opioid prescribing pattern. After adjusting for multiple comparisons, no difference was observed between the treatment and control groups in tramadol use (41% versus 71%, proportion difference 0.29 [95% CI 0.05 to 0.53]; nominal p = 0.02; adjusted p > 0.99). Conclusion Routine use of pharmacogenomic testing for patients undergoing TKA did not lead to better pain control or decreased opioid consumption. Future studies might focus on at-risk populations, such as patients with chronic pain or those undergoing complex, painful surgical procedures, to test whether pharmacogenomic results might be beneficial in certain circumstances. Level of Evidence Level I, therapeutic study.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Orthopedics and Sports Medicine,General Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3