The Role of RARG rs2229774, SLC28A3 rs7853758, and UGT1A6*4 rs17863783 Single-nucleotide Polymorphisms in the Doxorubicin-induced Cardiotoxicity in Solid Childhood Tumors

Author:

Gündüz Abdullah1,Duman Derya2,Başbinar Yasemin3,Taşdelen Bahar4,Küpeli Serhan4,Karpuz Derya2

Affiliation:

1. Pediatrics

2. Pediatric Cardiology

3. Dokuz Eylül University Oncology Institute, Izmir

4. Department of Pediatrics, Division of Pediatric Oncology and Pediatric Bone Marrow Transplantation Unit, Çukurova University Medical Faculty, Adana, Turkey

Abstract

Background: The objective of our study was to determine the role of retinoic acid receptor gamma (RARG) rs2229774, SLC28A3 rs7853758, and UGT1A6*4 rs17863783 single-nucleotide polymorphisms in identifying the risk of doxorubicin-induced cardiotoxicity in pediatric solid tumors. Methods: A total of 60 pediatric patients who had completed their treatment at least 2 years ago and 50 healthy children matched for age and sex were included in the study. All patients were evaluated for cardiotoxicity by echocardiography. The blood samples were analyzed for RARG rs2229774, SLC28A3 rs7853758, and UGT1A6*4 rs17863783 polymorphisms. Demographic characteristics, echocardiographic parameters, and genetic results of both groups were evaluated. Results: In our study, the RARG rs2229774 AA genotype was associated with cardiotoxicity (P=0.017). The SLC28A3 rs7853758 AA+GA genotype was detected more frequently in patients who did not develop cardiotoxicity (P<0.023). Furthermore, the frequency of the SLC28A3 rs7853758 A allele was significantly lower in the cardiotoxicity group (P<0.025). Conclusions: This is the first study in the Turkish population to investigate the correlation between the cardiotoxicity risk and 3 marker genes, which are recommended in the pharmacogenetic guideline for risk assessment in pediatric doxorubicin patients. The gene polymorphism that we investigated in this study was useful for the early prediction of cardiotoxicity risk.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Oncology,Hematology,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3