The Utility of Motor Evoked Potential Monitoring for Predicting Postoperative Motor Deficit in Patients With Insular Gliomas

Author:

Fan Xing1,You Hao1,Liu Jiajia1,Tao Xiaorong1,Wang Mingran1,Li Ke1,Yang Jun1,Xie Jian2,Qiao Hui1

Affiliation:

1. Department of Neurophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; and

2. Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

Abstract

Purpose: Motor evoked potential (MEP) monitoring has been widely applied in various neurosurgical operations. This study aimed to assess the predictive value of MEP monitoring for postoperative motor deficit (PMD) in patients with insular gliomas. Methods: Demographic and clinical data, MEP monitoring data, and follow-up data of 42 insular glioma patients were retrospectively reviewed, and 40 patients were finally enrolled. The value of MEP monitoring for predicting PMD was assessed with sensitivity, specificity, and false-positive/false-negative rates. Binary multivariate logistic regression analysis was performed to further identify the predictive value of MEP monitoring. Results: Statistical analysis showed that irreversible MEP changes, but not all MEP changes, were more effective in predicting PMD. The sensitivity and specificity of irreversible MEP changes for predicting long-term PMD were 85.71 and 93.94%, whereas the false-positive and -negative rates were 25.00 and 3.12% respectively. In addition, irreversible MEP changes were identified as the only independent predictor for long-term PMD (odds ratio, 101.714; 95% confidence interval, 6.001–1724.122; p = 0.001). Conclusions: MEP monitoring has been proven to be feasible in insular glioma surgery. Irreversible MEP changes showed good performance in predicting PMD. Their absence can offer an optimistic expectation for the long-term motor outcome. The findings can provide the surgical team with a more effective interpretation of MEP changes and contribute to exploring tailored MEP warning criteria.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Neurology (clinical),Neurology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3