Refurbishment of Extracorporeal Life Support Oxygenators in the Context of In Vitro Testing

Author:

Strudthoff Lasse J.1,Hesselmann Felix12,Clauser Johanna C.1,Arens Jutta1

Affiliation:

1. Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany

2. Enmodes GmbH, Aachen, Germany

Abstract

Refurbishing single use extracorporeal membrane oxygenation (ECMO) oxygenators for in vitro research applications is common. However, the refurbishment protocols that are established in respective laboratories have never been evaluated. In the present study, we aim at proving the relevance of a well-designed refurbishing protocol by quantifying the burden of repeatedly reused oxygenators. We used the same three oxygenators in 5 days of 6 hours whole blood experiments. During each experiment day, the performance of the oxygenators was measured through the evaluation of gas transfer. Between experiment days, each oxygenator was refurbished applying three alternative refurbishment protocols based on purified water, pepsin and citric acid, and hydrogen peroxide solutions, respectively. After the last experiment day, we disassembled the oxygenators for visual inspection of the fiber mats. The refurbishment protocol based on purified water showed strong degeneration with a 40-50 %-performance drop and clearly visible debris on the fiber mats. Hydrogen peroxide performed better; nevertheless, it suffered a 20% decrease in gas transfer as well as clearly visible debris. Pepsin/citric acid performed best in the field, but also suffered from 10% performance loss and very few, but visible debris. The study showed the relevance of a well-suited and well-designed refurbishment protocol. The distinct debris on the fiber mats also suggests that reusing oxygenators is ill-advised for many experiment series, especially regarding hemocompatibility and in vivo testing. Most of all, this study revealed the relevance of stating the status of test oxygenators and, if refurbished, comment on the implemented refurbishment protocol in detail.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Biomedical Engineering,General Medicine,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3