Extended Cellular Deposits on Gas Exchange Capillaries Are Not an Indicator of Clot Formation: Analysis of Different Membrane Oxygenators

Author:

Dropco Ivor1ORCID,Philipp Alois1,Foltan Maik1,Lunz Dirk2,Lubnow Matthias3,Lehle Karla1

Affiliation:

1. Department of Cardiothoracic Surgery, University Medical Center, Regensburg, Germany

2. Department of Anesthesiology, University Medical Center, Regensburg, Germany

3. Department of Internal Medicine II, University Medical Center, Regensburg, Germany.

Abstract

Antithrombogenic coatings of artificial surfaces within extracorporeal membrane oxygenation (ECMO) circuits improved its bio- and hemocompatibility. However, there is still a risk of thrombus formation in particular within the membrane oxygenator (MO). Since inflammatory cells are essential components within clots, the aim was to identify the extent of cellular accumulations on gas exchange capillaries from different ECMO systems. Thirty-four MOs (PLS, n = 27, Getinge; Hilite 7000 LT, n = 7, Fresenius Medical Care, Germany) were collected from adult patients. The extent of cellular deposits on gas exchange capillaries was classified using nuclear 4′,6-diamidino-2-phenylindole staining and fluorescence microscopy. All Hilite oxygenators exhibited small cellular deposits. In contrast, the cellular distribution was heterogeneous on capillaries from PLS oxygenators: small deposits (34%), clusters (44%) and membrane-spanning cell structures (pseudomembranes) (22%). Overall, the median fluorescence intensity was significantly higher in the PLS group. Nevertheless, within 3 days before MO removal, there was no alteration in critical parameters (d-dimer and fibrinogen levels, platelet counts, and pressure drop across the MO). In conclusion, despite the histological differences on the gas capillaries from different types of oxygenators, there was no further evidence of increased inflammation and coagulation parameters that indicate clot formation within oxygenators.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Biomedical Engineering,General Medicine,Biomaterials,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3