Alterations in Coronary Blood Flow and the Risk of Left Ventricular Distension in Venoarterial Extracorporeal Membrane Oxygenation

Author:

Myneni Manoj1ORCID,Cheema Faisal H.1,Rajagopal Keshava2

Affiliation:

1. Department of Clinical Sciences, College of Medicine, University of Houston, Houston, Texas

2. Division of Cardiac Surgery, Department of Surgery, Sidney Kimmel Medical College, Thomas Jefferson University

Abstract

Previous theoretical studies have suggested that veno-arterial extracorporeal membrane oxygenation (VA-ECMO) ought to consistently result in markedly increased left ventricular (LV) intracavitary pressures and volumes because of increased LV afterload. However, this phenomenon of LV distension does not universally occur and occurs only in a minority of cases. We sought to explain this discrepancy by considering the potential implications of VA-ECMO support on coronary blood flow and consequently improved LV contractility (the “Gregg” effect), in addition to the effects of VA-ECMO support upon LV loading conditions, in a lumped parameter-based theoretical circulatory model. We found that LV systolic dysfunction resulted in reduced coronary blood flow; VA-ECMO support augmented coronary blood flow proportionally to the circuit flow rate. On VA-ECMO support, a weak or absent Gregg effect resulted in increased LV end-diastolic pressures and volumes and increased end-systolic volume with decreased LV ejection fraction (LVEF), consistent with LV distension. In contrast, a more robust Gregg effect resulted in unaffected and/or even reduced LV end-diastolic pressure and volume, end-systolic volume, and unaffected or even increased LVEF. Left ventricular contractility augmentation proportional to coronary blood flow increased by VA-ECMO support may be an important contributory mechanism underlying why LV distension is observed only in a minority of cases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Biomedical Engineering,General Medicine,Biomaterials,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3