Artificial Deep Neural Network for Sensorless Pump Flow and Hemodynamics Estimation During Continuous-Flow Mechanical Circulatory Support

Author:

Kuroda Taiyo1ORCID,Kuban Barry D.1,Miyamoto Takuma1,Miyagi Chihiro1ORCID,Polakowski Anthony R.1,Flick Christine R.1,Karimov Jamshid H.12ORCID,Fukamachi Kiyotaka12ORCID

Affiliation:

1. Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio

2. Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio.

Abstract

The objective of this study was to compare the estimates of pump flow and systemic vascular resistance (SVR) derived from a mathematical regression model to those from an artificial deep neural network (ADNN). Hemodynamic and pump-related data were generated using both the Cleveland Clinic continuous-flow total artificial heart (CFTAH) and pediatric CFTAH on a mock circulatory loop. An ADNN was trained with generated data, and a mathematical regression model was also generated using the same data. Finally, the absolute error for the actual measured data and each set of estimated data were compared. A strong correlation was observed between the measured flow and the estimated flow using either method (mathematical, R = 0.97, p < 0.01; ADNN, R = 0.99, p < 0.01). The absolute error was smaller in the ADNN estimation (mathematical, 0.3 L/min; ADNN 0.12 L/min; p < 0.01). Furthermore, strong correlation was observed between measured and estimated SVR (mathematical, R = 0.97, p < 0.01; ADNN, R = 0.99, p < 0.01). The absolute error for ADNN estimation was also smaller than that of the mathematical estimation (mathematical, 463 dynes·sec·cm−5; ADNN, 123 dynes·sec·cm−5, p < 0.01). Therefore, in this study, ADNN estimation was more accurate than mathematical regression estimation. http://links.lww.com/ASAIO/A991

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Biomedical Engineering,General Medicine,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3