Damage-Associated Molecular Patterns as Mediators of Thrombus Formation on Dialyzer Membrane in Critically Ill Patients

Author:

Okamoto Kaori1,Ito Takashi2,Sato Sara3,Yamamoto Masahiro34,Takahashi Masaki5,Takahashi Yuki5,Tsuchida Takumi5,Mizugaki Asumi5,Hayakawa Mineji5

Affiliation:

1. From the Division of Medical Engineering Center, Hokkaido University Hospital, Sapporo, Japan

2. Faculty of Life Sciences, Department of Biomedical Laboratory Sciences, Kumamoto University, Kumamoto, Japan

3. Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan

4. Faculty of Life Sciences, Department of Morphological and Physiological Sciences, Kumamoto University, Kumamoto, Japan

5. Emergency and Critical Care Center, Hokkaido University Hospital, Sapporo, Japan.

Abstract

This prospective study investigated the relationship between inflammation, damage-associated molecular patterns (DAMPs), and thrombus formation on dialyzer membranes in critically ill patients undergoing renal replacement therapy (RRT) from July 2020 to August 2022, identifying mechanisms and interventions to prevent clotting. The patients were divided into two groups: inflammatory (n = 56, serum C-reactive protein >10 mg/dl) and noninflammatory control (n = 45, serum C-reactive protein <5 mg/dl). Cell-free deoxyribonucleic acid (DNA) levels, high mobility group box 1 protein (HMGB1), histone H3, and myeloperoxidase (MPO) in the lumen of the hollow fiber membrane of the dialyzer were quantified. Immunostaining assessed leukocytes, fibrin fibers, and platelet thrombi on the luminal surface of the hollow fiber membrane. The inflammatory group, compared to controls, exhibited elevated cell-free DNA, HMGB1, and MPO levels, although histone H3 remained unchanged. Damage-associated molecular patterns increased with disseminated intravascular coagulation (DIC) severity. Immunostaining in the inflammatory group revealed leukocytes, amorphous nuclei, neutrophil extracellular trap-like structures, fibrin fibers, and platelet thrombi on the hollow fiber membrane’s luminal surface. Elevated DAMP levels in severely inflamed patients’ dialyzer membranes, correlating with DIC severity, indicate a link between inflammation, coagulation activation, and dialyzer clotting. Research into thrombus prevention in RRT for DIC-affected critically ill patients is warranted.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3