Pilot Testing of a Lightweight, Pulmonary Assist System in an Ambulatory Sheep Model of Destination Therapy Respiratory Support

Author:

Roberts Kalliope G.1,Umei Nao2,Shin Suji1,Lai Angela1,Comber Erica M.1,Ichiba Shingo2,Chopra Gopal K.3,Skoog David J.4,Bacchetta Matthew D.5,Cook Keith E.1

Affiliation:

1. Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania

2. Department of Surgical Intensive Care Medicine, Nippon Medical School, Tokyo, Japan

3. Cardiodyme Inc., New York, New York

4. Advanced Respiratory Technologies, Pittsburgh, Pennsylvania

5. Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.

Abstract

A new, lightweight (2.3 kg), ambulatory pulmonary assist system (PAS) underwent preliminary evaluation in ambulatory sheep. The PAS was purposefully designed for long-term extracorporeal respiratory support for chronic lung disease and utilizes a novel, small (0.9 m2 surface area) gas exchanger, the pulmonary assist device, with a modified Heart Assist 5 pump fitting in a small wearable pack. Prototype PAS were attached to two sheep in venovenous configuration for 7 and 14 days, evaluating ability to remain thrombus free; maintain gas exchange and blood flow resistance; avoid biocompatibility-related complications while allowing safe ambulation. The PAS achieved 1.56 L/min of flow at 10.8 kRPM with a 24 Fr cannula in sheep one and 2.0 L/min at 10.5 kRPM with a 28 Fr cannula in sheep 2 without significant change. Both sheep walked freely, demonstrating the first application of truly ambulatory ECMO in sheep. While in vitro testing evaluated PAS oxygen transfer rates of 104.6 ml/min at 2 L/min blood flow, oxygen transfer rates averaged 60.6 ml/min and 70.6 ml/min in studies 1 and 2, due to average hemoglobin concentrations lower than humans (8.9 and 10.5 g/dl, respectively). The presented cases support uncomplicated ambulation using the PAS.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Biomedical Engineering,General Medicine,Biomaterials,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3