Association between antioxidant metabolites and N-terminal fragment brain natriuretic peptides in insulin-resistant individuals

Author:

Anwardeen Najeha1,Naja Khaled1,Elrayess Mohamed A.12

Affiliation:

1. Biomedical Research Center

2. QU Health, Qatar University, Doha, Qatar

Abstract

Objectives Oxidative stress plays a pivotal role in the development of metabolic syndrome, including heart failure and insulin resistance. The N-terminal fragment of brain natriuretic peptide (NT-proBNP) has been associated with heightened oxidative stress in heart failure patients. Yet, its correlation with insulin resistance remains poorly understood. Our objective is to investigate the association between oxidative stress markers and NT-proBNP levels in insulin-resistant individuals. Methods In this cross-sectional study involving 393 participants from the Qatar Biobank, clinical and metabolic data were collected, and the association between NT-proBNP and 72 oxidative stress metabolites was compared between insulin-sensitive and insulin-resistant individuals. Results Our results showed significantly lower NT-proBNP levels in insulin-resistant individuals (median = 17 pg/ml; interquartile range = 10.3–29) when compared to their insulin-sensitive counterparts (median = 31 pg/ml; interquartile range = 19–57). Moreover, we revealed notable associations between NT-proBNP levels and antioxidant metabolic pathways, particularly those related to glutathione metabolism, in insulin-resistant, but not insulin-sensitive individuals. Conclusion The significant decrease in NT-proBNP observed in individuals with insulin resistance may be attributed to a direct or indirect enhancement in glutathione production, which is regarded as a compensatory mechanism against oxidative stress. This study could advance our understanding of the interplay between oxidative stress during insulin resistance and cardiovascular risk, which could lead to novel therapeutic approaches for managing cardiovascular diseases. Further investigations are needed to assess the practical utility of these potential metabolites and understand the causal nature of their association with NT-proBNP in the etiology of insulin resistance.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference55 articles.

1. Oxidative stress and heart failure.;Tsutsui;Am J Physiol Heart Circ Physiol,2011

2. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus.;Tangvarasittichai;World J Diabetes,2015

3. Association between insulin resistance and the development of cardiovascular disease.;Ormazabal;Cardiovasc Diabetol,2018

4. Natriuretic peptide system and cardiovascular disease.;Federico;Heart Views,2010

5. Role of cardiac natriuretic peptides in heart structure and function.;Sarzani;Int J Mol Sci,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3