Deep learning applications in vascular dementia using neuroimaging

Author:

Dong Chao,Hayashi Shizuka

Abstract

Purpose of review Vascular dementia (VaD) is the second common cause of dementia after Alzheimer's disease, and deep learning has emerged as a critical tool in dementia research. The aim of this article is to highlight the current deep learning applications in VaD-related imaging biomarkers and diagnosis. Recent findings The main deep learning technology applied in VaD using neuroimaging data is convolutional neural networks (CNN). CNN models have been widely used for lesion detection and segmentation, such as white matter hyperintensities (WMH), cerebral microbleeds (CMBs), perivascular spaces (PVS), lacunes, cortical superficial siderosis, and brain atrophy. Applications in VaD subtypes classification also showed excellent results. CNN-based deep learning models have potential for further diagnosis and prognosis of VaD. Summary Deep learning neural networks with neuroimaging data in VaD research represent significant promise for advancing early diagnosis and treatment strategies. Ongoing research and collaboration between clinicians, data scientists, and neuroimaging experts are essential to address challenges and unlock the full potential of deep learning in VaD diagnosis and management.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3