Toward safer ophthalmic artificial intelligence via distributed validation on real-world data

Author:

Nath Siddharth1,Rahimy Ehsan2,Kras Ashley34,Korot Edward245

Affiliation:

1. Department of Ophthalmology and Visual Sciences, McGill University, Montréal, Québec, Canada

2. Byers Eye Institute, Stanford University, Palo Alto, California, USA

3. Save Sight Institute, Sydney University, Sydney, Australia

4. Moorfields Eye Hospital NHS Foundation Trust, London, UK

5. Retina Specialists of Michigan, Grand Rapids, Michigan, USA

Abstract

Purpose of review The current article provides an overview of the present approaches to algorithm validation, which are variable and largely self-determined, as well as solutions to address inadequacies. Recent findings In the last decade alone, numerous machine learning applications have been proposed for ophthalmic diagnosis or disease monitoring. Remarkably, of these, less than 15 have received regulatory approval for implementation into clinical practice. Although there exists a vast pool of structured and relatively clean datasets from which to develop and test algorithms in the computational ‘laboratory’, real-world validation remains key to allow for safe, equitable, and clinically reliable implementation. Bottlenecks in the validation process stem from a striking paucity of regulatory guidance surrounding safety and performance thresholds, lack of oversight on critical postdeployment monitoring and context-specific recalibration, and inherent complexities of heterogeneous disease states and clinical environments. Implementation of secure, third-party, unbiased, pre and postdeployment validation offers the potential to address existing shortfalls in the validation process. Summary Given the criticality of validation to the algorithm pipeline, there is an urgent need for developers, machine learning researchers, and end-user clinicians to devise a consensus approach, allowing for the rapid introduction of safe, equitable, and clinically valid machine learning implementations.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Ophthalmology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3