Author:
Thielen Otto,Mitra Sanchayita,Debot Margot,Schaid Terry,Hallas William,Gallagher Lauren T.,Erickson Christopher,Cralley Alexis,Stafford Preston,Silliman Christopher,D’Alessandro Angelo,Hansen Kirk,Sauaia Angela,Moore Ernest,Mosnier Laurent,Griffin John,Cohen Mitchell
Abstract
BACKGROUND
Activated Protein C (aPC) plays dual roles after injury, driving both trauma-induced coagulopathy (TIC) by cleaving, and thus inactivating, factors Va and VIIIa and depressing fibrinolysis while also mediating an inflammomodulatory milieu via protease activated receptor-1 (PAR-1) cytoprotective signaling. Because of this dual role, it represents and ideal target for study and therapeutics after trauma. A known aPC variant, 3K3A-aPC, has been engineered to preserve cytoprotective activity while retaining minimal anticoagulant activity rendering it potentially ideal as a cytoprotective therapeutic after trauma. We hypothesized that 3K3A-aPC would mitigate the endotheliopathy of trauma by protecting against endothelial permeability.
METHODS
We used electric cell-substrate impedance sensing to measure permeability changes in real time in primary endothelial cells. These were cultured, grown to confluence, and treated with a 2 μg/mL solution of 3K3A-aPC at 180 minutes, 120 minutes, 60 minutes, 30 minutes prior to stimulation with ex vivo plasma taken from severely injured trauma patients (Injury Severity Score > 15 and BD < −6) (trauma plasma [TP]). Cells treated with thrombin and untreated cells were included in this study as control groups. Permeability changes were recorded in real time via electric cell-substrate impedance sensing for 30 minutes after treatment with TP. We quantified permeability changes in the control and treatment groups as area under the curve (AUC). Rac1/RhoA activity was also compared between these groups. Statistical significance was determined by one-way ANOVA followed by a post hoc analysis using Tukey's multiple comparison's test.
RESULTS
Treatment with aPC mitigated endothelial permeability induced by ex vivo trauma plasma at all pre-treatment time points. The AUC of the 30-minute 3K3A-aPC pretreatment group was higher than TP alone (mean diff. 22.12 95% CI [13.75, 30.49], p < 0.0001) (Figure). Moreover, the AUC of the 60-minute, 120-minute, and 180-minute pretreatment groups was also higher than TP alone (mean diff., 16.30; 95% confidence interval [CI], 7.93–24.67; 19.43; 95% CI, 11.06–27.80, and 18.65; 95% CI, 10.28–27.02;, all p < 0.0001, respectively). Rac1/RhoA activity was higher in the aPC pretreatment group when compared with all other groups (p < 0.01).
CONCLUSION
Pretreatment with 3K3A-aPC, which retains its cytoprotective function but has only ~5% of its anticoagulant function, abrogates the effects of trauma-induced endotheliopathy. This represents a potential therapeutic treatment for dysregulated thromboinflammation for injured patients by minimizing aPC's role in trauma-induced coagulopathy while concurrently amplifying its essential cytoprotective function.
LEVEL OF EVIDENCE
Prognostic and Epidemiological; Level III.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Critical Care and Intensive Care Medicine,Surgery
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献