Ccr2-dependent monocytes exacerbate intestinal inflammation and modulate gut serotonergic signaling following traumatic brain injury

Author:

El Baassiri Mahmoud G.,Raouf Zachariah,Jang Hee-Seong,Scheese Daniel,Duess Johannes W.,Fulton William B.,Sodhi Chhinder P.,Hackam David J.,Nasr Isam W.

Abstract

BACKGROUND Traumatic brain injury (TBI) leads to acute gastrointestinal dysfunction and mucosal damage, resulting in feeding intolerance. C-C motif chemokine receptor 2 (Ccr2+) monocytes are crucial immune cells that regulate the gut's inflammatory response via the brain-gut axis. Using Ccr2ko mice, we investigated the intricate interplay between these cells to better elucidate the role of systemic inflammation after TBI. METHODS A murine-controlled cortical impact model was used, and results were analyzed on postinjury days 1 and 3. The experimental groups included (1) sham C57Bl/6 wild type (WT), (2) TBI WT, (3) sham Ccr2ko, and (4) TBI Ccr2ko. Mice were euthanized on postinjury days 1 and 3 to harvest the ileum and study intestinal dysfunction and serotonergic signaling using a combination of quantitative real-time polymerase chain reaction, immunohistochemistry, fluorescein isothiocyanate-dextran motility assays, and flow cytometry. Student's t test and one-way analysis of variance were used for statistical analysis, with significance achieved when p < 0.05. RESULTS Traumatic brain injury resulted in severe dysfunction and dysmotility of the small intestine in WT mice as established by significant upregulation of inflammatory cytokines iNOS, Lcn2, TNFα, and IL1β and the innate immunity receptor toll-like receptor 4 (Tlr4). This was accompanied by disruption of genes related to serotonin synthesis and degradation. Notably, Ccr2ko mice subjected to TBI showed substantial improvements in intestinal pathology. Traumatic brain injury Ccr2ko groups demonstrated reduced expression of inflammatory mediators (iNOS, Lcn2, IL1β, and Tlr4) and improvement in serotonin synthesis genes, including tryptophan hydroxylase 1 (Tph1) and dopa decarboxylase (Ddc). CONCLUSION Our study reveals a critical role for Ccr2+ monocytes in modulating intestinal homeostasis after TBI. Ccr2+ monocytes aggravate intestinal inflammation and alter gut-derived serotonergic signaling. Therefore, targeting Ccr2+ monocyte-dependent responses could provide a better understanding of TBI-induced gut inflammation. Further studies are required to elucidate the impact of these changes on brain neuroinflammation and cognitive outcomes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3