Dimethyl sulfoxide as a novel therapy in a murine model of acute lung injury

Author:

Taghavi Sharven,Engelhardt David,Campbell Alexandra,Goldvarg-Abud Inna,Duchesne Juan,Shaheen Farhana,Pociask Derek,Kolls Jay,Jackson-Weaver Olan

Abstract

INTRODUCTION The endothelial glycocalyx on the luminal surface of endothelial cells contributes to the permeability barrier of the pulmonary vasculature. Dimethyl sulfoxide (DMSO) has a disordering effect on plasma membranes, which prevents the formation of ordered membrane domains important in the shedding of the endothelial glycocalyx. We hypothesized that DMSO would protect against protein leak by preserving the endothelial glycocalyx in a murine model of acute respiratory distress syndrome (ARDS). METHODS C57BL/6 mice were given ARDS via intratracheally administered lipopolysaccharide (LPS). Dimethyl sulfoxide (220 mg/kg) was administered intravenously for 4 days. Animals were sacrificed postinjury day 4 after bronchoalveolar lavage (BAL). Bronchoalveolar lavage cell counts and protein content were quantified. Lung sections were stained with fluorescein isothiocyanate-labeled wheat germ agglutinin to quantify the endothelial glycocalyx. Human umbilical vein endothelial cells (HUVECs) were exposed to LPS. Endothelial glycocalyx was measured using fluorescein isothiocyanate-labeled wheat germ agglutinin, and co-immunoprecipitation was performed to measure interaction between sheddases and syndecan-1. RESULTS Dimethyl sulfoxide treatment resulted in greater endothelial glycocalyx staining intensity in the lung when compared with sham (9,641 vs. 36,659 arbitrary units, p < 0.001). Total BAL cell counts were less for animals receiving DMSO (6.93 × 106 vs. 2.49 × 106 cells, p = 0.04). The treated group had less BAL macrophages (189.2 vs. 76.9 cells, p = 0.02) and lymphocytes (527.7 vs. 200.0 cells, p = 0.02). Interleukin-6 levels were lower in DMSO treated. Animals that received DMSO had less protein leak in BAL (1.48 vs. 1.08 μg/μL, p = 0.02). Dimethyl sulfoxide prevented LPS-induced endothelial glycocalyx loss in HUVECs and reduced the interaction between matrix metalloproteinase 16 and syndecan-1. CONCLUSION Systemically administered DMSO protects the endothelial glycocalyx in the pulmonary vasculature, mitigating pulmonary capillary leak after acute lung injury. Dimethyl sulfoxide also results in decreased inflammatory response. Dimethyl sulfoxide reduced the interaction between matrix metalloproteinase 16 and syndecan-1 and prevented LPS-induced glycocalyx damage in HUVECs. Dimethyl sulfoxide may be a novel therapeutic for ARDS.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3