Author:
El Moheb Mohamad,Gebran Anthony,Maurer Lydia R.,Naar Leon,El Hechi Majed,Breen Kerry,Dorken-Gallastegi Ander,Sinyard Robert,Bertsimas Dimitris,Velmahos George,Kaafarani Haytham M.A.
Abstract
BACKGROUND
Artificial intelligence (AI) risk prediction algorithms such as the smartphone-available Predictive OpTimal Trees in Emergency Surgery Risk (POTTER) for emergency general surgery (EGS) are superior to traditional risk calculators because they account for complex nonlinear interactions between variables, but how they compare to surgeons’ gestalt remains unknown. Herein, we sought to: (1) compare POTTER to surgeons’ surgical risk estimation and (2) assess how POTTER influences surgeons' risk estimation.
STUDY DESIGN
A total of 150 patients who underwent EGS at a large quaternary care center between May 2018 and May 2019 were prospectively followed up for 30-day postoperative outcomes (mortality, septic shock, ventilator dependence, bleeding requiring transfusion, pneumonia), and clinical cases were systematically created representing their initial presentation. POTTER's outcome predictions for each case were also recorded. Thirty acute care surgeons with diverse practice settings and levels of experience were then randomized into two groups: 15 surgeons (SURG) were asked to predict the outcomes without access to POTTER's predictions while the remaining 15 (SURG-POTTER) were asked to predict the same outcomes after interacting with POTTER. Comparing to actual patient outcomes, the area under the curve (AUC) methodology was used to assess the predictive performance of (1) POTTER versus SURG, and (2) SURG versus SURG-POTTER.
RESULTS
POTTER outperformed SURG in predicting all outcomes (mortality—AUC: 0.880 vs. 0.841; ventilator dependence—AUC: 0.928 vs. 0.833; bleeding—AUC: 0.832 vs. 0.735; pneumonia—AUC: 0.837 vs. 0.753) except septic shock (AUC: 0.816 vs. 0.820). SURG-POTTER outperformed SURG in predicting mortality (AUC: 0.870 vs. 0.841), bleeding (AUC: 0.811 vs. 0.735), pneumonia (AUC: 0.803 vs. 0.753) but not septic shock (AUC: 0.712 vs. 0.820) or ventilator dependence (AUC: 0.834 vs. 0.833).
CONCLUSION
The AI risk calculator POTTER outperformed surgeons' gestalt in predicting the postoperative mortality and outcomes of EGS patients, and when used, improved the individual surgeons' risk prediction. Artificial intelligence algorithms, such as POTTER, could prove useful as a bedside adjunct to surgeons when preoperatively counseling patients.
LEVEL OF EVIDENCE
Prognostic and Epidemiological; Level II.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Critical Care and Intensive Care Medicine,Surgery
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献