Bioadhesive patch as a parenchymal sparing treatment of acute traumatic pulmonary air leaks

Author:

Williams James,Prey Beau,Francis Andrew,Weykamp Michael,Liu Betty,Parsons Michael,Vu Michael,Franko Jace,Roedel Erik,Horton John,Bingham Jason,Mentzer Steven,Kuckelman John

Abstract

INTRODUCTION Traumatic pulmonary injuries are common in chest trauma. Persistent air leaks occur in up to 46% of patients depending on injury severity. Prolonged leaks are associated with increased morbidity and cost. Prior work from our first-generation pectin patches successfully sealed pulmonary leaks in a cadaveric swine model. We now test the next-generation pectin patch against wedge resection in the management of air leaks in anesthetized swine. METHODS A continuous air leak of 10% to 20% percent was created to the anterior surface of the lung in intubated and sedated swine. Animals were treated with a two-ply pectin patch or stapled wedge resection (SW). Tidal volumes (TVs) were recorded preinjury and postinjury. Following repair, TVs were recorded, a chest tube was placed, and animals were observed for presence air leak at closure and for an additional 90 minutes while on positive pressure ventilation. Mann-Whitney U test and Fisher's exact test used to compare continuous and categorical data between groups. RESULTS Thirty-one animals underwent either SW (15) or pectin patch repair (PPR, 16). Baseline characteristics were similar between animals excepting baseline TV (SW, 10.3 mL/kg vs. PPR, 10.9 mL/kg; p = 0.03). There was no difference between groups for severity of injury based on percent of TV loss (SW, 15% vs. PPR, 14%; p = 0.5). There was no difference in TV between groups following repair (SW, 10.2 mL/kg vs. PPR, 10.2 mL/kg; p = 1) or at the end of observation (SW, 9.8 mL/kg vs. PPR, 10.2 mL/kg; p = 0.4). One-chamber intermittent air leaks were observed in three of the PPR animals, versus one in the SW group (p = 0.6). CONCLUSION Pectin patches effectively sealed the lung following injury and were noninferior when compared with wedge resection for the management of acute traumatic air leaks. Pectin patches may offer a parenchymal sparing option for managing such injuries, although studies evaluating biodurability are needed.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Critical Care and Intensive Care Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3