A novel miRNA mimic attenuates organ injury after hepatic ischemia/reperfusion

Author:

Borjas Timothy,Jacob Asha,Kobritz Molly,Patel Vihas,Coppa Gene F.,Aziz Monowar,Wang Ping

Abstract

INTRODUCTION Extracellular cold-inducible RNA-binding protein (eCIRP) is a novel mediator of inflammation and tissue injury. It has been shown that miRNA 130b-3p acts as an endogenous inhibitor of eCIRP. Because RNA mimics are unstable after in vivo administration, we have chemically engineered miRNA 130b-3p mimic (named PS-OMe miR130) to improve its stability by protection from nuclease activity. We hypothesize that PS-OMe miR130 reduces eCIRP-mediated injury and inflammation in a murine model of hepatic ischemia/reperfusion (I/R), a model of sterile inflammation. METHODS Adult male mice underwent 70% hepatic ischemia for 60 minutes and 24-hour reperfusion. At the start of reperfusion, mice were treated intravenously with vehicle (phosphate-buffered saline) or PS-OMe miR130. Blood and liver tissue were collected after 24 hours for biochemical analysis. Apoptosis in the liver tissue was determined by transferase dUTP nick-end labeling assay. RESULTS After hepatic I/R, organ injury markers including aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase significantly decreased after PS-OMe miR130 treatment. Furthermore, histological analysis of liver sections demonstrated significantly less injury in PS-OMe miR130 treatment mice versus vehicle mice. In addition, tumor necrosis factor α mRNA, interleukin-1β mRNA, and neutrophil infiltration (myeloperoxidase activity and granulocyte receptor 1 immunohistochemistry) were significantly attenuated after PS-OMe miR130 treatment. Finally, apoptosis significantly decreased in liver tissue after treatment. CONCLUSION PS-OMe miR130 decreases eCIRP-mediated injury and inflammation in a murine model of hepatic I/R.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Critical Care and Intensive Care Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3