Quantifying the Individual Variation in Susceptibility to Endemic Coronavirus and SARS-CoV-2 with Human Challenge Trials

Author:

Miura Fuminari12ORCID,Klinkenberg Don1ORCID,Wallinga Jacco13ORCID

Affiliation:

1. Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands

2. Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan

3. Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.

Abstract

Human challenge trials reveal how the infection risk depends on a given infectious dose. We propose a mathematical framework to analyze and interpret the outcomes of human challenge trials by incorporating the variability between individuals in susceptibility to infection. We illustrate the framework for two distinctive diseases; endemic diseases where a fraction of the study population has been exposed to the target pathogen previously and is thus immune, and novel diseases where the study population is fully susceptible. Based on available data from published trials, we estimate the immune proportion and the variation in susceptibility to endemic HCoV-229E and present plausible infection risks with SARS-CoV-2 over multiple orders of magnitude of the infectious dose. The results show that the proposed method captures heterogeneous background susceptibility in the study population, and we suggest ways to improve the design of future trials and to translate their outcomes to the general population.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3