Comparative Effectiveness of Dynamic Treatment Strategies for Medication Use and Dosage: Emulating a Target Trial Using Observational Data

Author:

Birnie Kate1,Tomson Charles2,Caskey Fergus J.13,Ben-Shlomo Yoav1,Nitsch Dorothea45,Casula Anna6,Murray Eleanor J.7,Sterne Jonathan A. C.189

Affiliation:

1. Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom

2. Department of Renal Medicine, Freeman Hospital, Newcastle upon Tyne, United Kingdom

3. Department of Renal Medicine, North Bristol NHS Trust, Bristol, United Kingdom

4. Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom

5. Department of Nephrology, Royal Free London NHS Foundation Trust, London, United Kingdom

6. UK Renal Registry, UK Kidney Association, Bristol, United Kingdom

7. Department of Epidemiology, School of Public Health, Boston University, Boston, MA

8. Health Data Research, United Kingdom South-West

9. NIHR Bristol Biomedical Research Centre, Bristol, United Kingdom.

Abstract

Background: Availability of detailed data from electronic health records (EHRs) has increased the potential to examine the comparative effectiveness of dynamic treatment strategies using observational data. Inverse probability (IP) weighting of dynamic marginal structural models can control for time-varying confounders. However, IP weights for continuous treatments may be sensitive to model choice. Methods: We describe a target trial comparing strategies for treating anemia with darbepoetin in hemodialysis patients using EHR data from the UK Renal Registry 2004 to 2016. Patients received a specified dose (microgram/week) or did not receive darbepoetin. We compared 4 methods for modeling time-varying treatment: (A) logistic regression for zero dose, standard linear regression for log dose; (B) logistic regression for zero dose, heteroscedastic linear regression for log dose; (C) logistic regression for zero dose, heteroscedastic linear regression for log dose, multinomial regression for patients who recently received very low or high doses; and (D) ordinal logistic regression. Results: For this dataset, method (C) was the only approach that provided a robust estimate of the mortality hazard ratio (HR), with less-extreme weights in a fully weighted analysis and no substantial change of the HR point estimate after weight truncation. After truncating IP weights at the 95th percentile, estimates were similar across the methods. Conclusions: EHR data can be used to emulate target trials estimating the comparative effectiveness of dynamic strategies adjusting treatment to evolving patient characteristics. However, model checking, monitoring of large weights, and adaptation of model strategies to account for these is essential if an aspect of treatment is continuous.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3