Inverse Probability of Treatment Weighting and Confounder Missingness in Electronic Health Record-based Analyses: A Comparison of Approaches Using Plasmode Simulation

Author:

Vader Daniel T.1ORCID,Mamtani Ronac2,Li Yun1,Griffith Sandra D.3,Calip Gregory S.3,Hubbard Rebecca A.1

Affiliation:

1. Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA

2. Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA

3. Flatiron Health, New York, NY.

Abstract

Background: Electronic health record (EHR) data represent a critical resource for comparative effectiveness research, allowing investigators to study intervention effects in real-world settings with large patient samples. However, high levels of missingness in confounder variables is common, challenging the perceived validity of EHR-based investigations. Methods: We investigated performance of multiple imputation and propensity score (PS) calibration when conducting inverse probability of treatment weights (IPTW)-based comparative effectiveness research using EHR data with missingness in confounder variables and outcome misclassification. Our motivating example compared effectiveness of immunotherapy versus chemotherapy treatment of advanced bladder cancer with missingness in a key prognostic variable. We captured complexity in EHR data structures using a plasmode simulation approach to spike investigator-defined effects into resamples of a cohort of 4361 patients from a nationwide deidentified EHR-derived database. We characterized statistical properties of IPTW hazard ratio estimates when using multiple imputation or PS calibration missingness approaches. Results: Multiple imputation and PS calibration performed similarly, maintaining ≤0.05 absolute bias in the marginal hazard ratio even when ≥50% of subjects had missing at random or missing not at random confounder data. Multiple imputation required greater computational resources, taking nearly 40 times as long as PS calibration to complete. Outcome misclassification minimally increased bias of both methods. Conclusion: Our results support multiple imputation and PS calibration approaches to missingness in missing completely at random or missing at random confounder variables in EHR-based IPTW comparative effectiveness analyses, even with missingness ≥50%. PS calibration represents a computationally efficient alternative to multiple imputation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3