Machine Learning Identifies Higher Survival Profile In Extracorporeal Cardiopulmonary Resuscitation*

Author:

Crespo-Diaz Ruben1,Wolfson Julian2,Yannopoulos Demetris3,Bartos Jason A.3

Affiliation:

1. Mayo Clinic, Department of Cardiovascular Diseases, Rochester, MN.

2. Division of Biostatistics, University of Minnesota, Minneapolis, MN.

3. Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN.

Abstract

OBJECTIVES: Extracorporeal cardiopulmonary resuscitation (ECPR) has been shown to improve neurologically favorable survival in patients with refractory out-of-hospital cardiac arrest (OHCA) caused by shockable rhythms. Further refinement of patient selection is needed to focus this resource-intensive therapy on those patients likely to benefit. This study sought to create a selection model using machine learning (ML) tools for refractory cardiac arrest patients undergoing ECPR. DESIGN: Retrospective cohort study. SETTING: Cardiac ICU in a Quaternary Care Center. PATIENTS: Adults 18–75 years old with refractory OHCA caused by a shockable rhythm. METHODS: Three hundred seventy-six consecutive patients with refractory OHCA and a shockable presenting rhythm were analyzed, of which 301 underwent ECPR and cannulation for venoarterial extracorporeal membrane oxygenation. Clinical variables that were widely available at the time of cannulation were analyzed and ranked on their ability to predict neurologically favorable survival. INTERVENTIONS: ML was used to train supervised models and predict favorable neurologic outcomes of ECPR. The best-performing models were internally validated using a holdout test set. MEASUREMENTS AND MAIN RESULTS: Neurologically favorable survival occurred in 119 of 301 patients (40%) receiving ECPR. Rhythm at the time of cannulation, intermittent or sustained return of spontaneous circulation, arrest to extracorporeal membrane oxygenation perfusion time, and lactic acid levels were the most predictive of the 11 variables analyzed. All variables were integrated into a training model that yielded an in-sample area under the receiver-operating characteristic curve (AUC) of 0.89 and a misclassification rate of 0.19. Out-of-sample validation of the model yielded an AUC of 0.80 and a misclassification rate of 0.23, demonstrating acceptable prediction ability. CONCLUSIONS: ML can develop a tiered risk model to guide ECPR patient selection with tailored arrest profiles.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3