Performance Evaluation of a Supervised Machine Learning Pain Classification Model Developed by Neonatal Nurses

Author:

Manworren Renee C. B.ORCID,Horner Susan,Joseph Ralph,Dadar Priyansh,Kaduwela Naomi

Abstract

Background: Early-life pain is associated with adverse neurodevelopmental consequences; and current pain assessment practices are discontinuous, inconsistent, and highly dependent on nurses’ availability. Furthermore, facial expressions in commonly used pain assessment tools are not associated with brain-based evidence of pain. Purpose: To develop and validate a machine learning (ML) model to classify pain. Methods: In this retrospective validation study, using a human-centered design for Embedded Machine Learning Solutions approach and the Neonatal Facial Coding System (NFCS), 6 experienced neonatal intensive care unit (NICU) nurses labeled data from randomly assigned iCOPEvid (infant Classification Of Pain Expression video) sequences of 49 neonates undergoing heel lance. NFCS is the only observational pain assessment tool associated with brain-based evidence of pain. A standard 70% training and 30% testing split of the data was used to train and test several ML models. NICU nurses’ interrater reliability was evaluated, and NICU nurses’ area under the receiver operating characteristic curve (AUC) was compared with the ML models’ AUC. Results: Nurses weighted mean interrater reliability was 68% (63%-79%) for NFCS tasks, 77.7% (74%-83%) for pain intensity, and 48.6% (15%-59%) for frame and 78.4% (64%-100%) for video pain classification, with AUC of 0.68. The best performing ML model had 97.7% precision, 98% accuracy, 98.5% recall, and AUC of 0.98. Implications for Practice and Research: The pain classification ML model AUC far exceeded that of NICU nurses for identifying neonatal pain. These findings will inform the development of a continuous, unbiased, brain-based, nurse-in-the-loop Pain Recognition Automated Monitoring System (PRAMS) for neonates and infants.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3