A Prospective Validation of the IOTA Logistic Regression Models (LR1 and LR2) in Comparison to Subjective Pattern Recognition for the Diagnosis of Ovarian Cancer

Author:

Nunes Natalie,Ambler Gareth,Hoo Wee-Liak,Naftalin Joel,Foo Xulin,Widschwendter Martin,Jurkovic Davor

Abstract

ObjectivesThis study aimed to assess the accuracy of the International Ovarian Tumour Analysis (IOTA) logistic regression models (LR1 and LR2) and that of subjective pattern recognition (PR) for the diagnosis of ovarian cancer.Methods and MaterialsThis was a prospective single-center study in a general gynecology unit of a tertiary hospital during 33 months. There were 292 consecutive women who underwent surgery after an ultrasound diagnosis of an adnexal tumor. All examinations were by a single level 2 ultrasound operator, according to the IOTA guidelines. The malignancy likelihood was calculated using the IOTA LR1 and LR2. The women were then examined separately by an expert operator using subjective PR. These were compared to operative findings and histology. The sensitivity, specificity, area under the curve (AUC), and accuracy of the 3 methods were calculated and compared.ResultsThe AUCs for LR1 and LR2 were 0.94 [95% confidence interval (CI), 0.92–0.97] and 0.93 (95% CI, 0.90–0.96), respectively. Subjective PR gave a positive likelihood ratio (LR+ve) of 13.9 (95% CI, 7.84–24.6) and a LR−ve of 0.049 (95% CI, 0.022–0.107). The corresponding LR+ve and LR−ve for LR1 were 3.33 (95% CI, 2.85–3.55) and 0.03 (95% CI, 0.01–0.10), and for LR2 were 3.58 (95% CI, 2.77–4.63) and 0.052 (95% CI, 0.022–0.123). The accuracy of PR was 0.942 (95% CI, 0.908–0.966), which was significantly higher when compared with 0.829 (95% CI, 0.781–0.870) for LR1 and 0.836 (95% CI, 0.788–0.872) for LR2 (P < 0.001).ConclusionsThe AUC of the IOTA LR1 and LR2 were similar in nonexpert’s hands when compared to the original and validation IOTA studies. The PR method was the more accurate test to diagnose ovarian cancer than either of the IOTA models.

Publisher

BMJ

Subject

Obstetrics and Gynecology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3