Design and evaluation of a hip prosthesis simulator: A technical note

Author:

Fanous Amir1,Botros Michael1,Gholizadeh Hossein12ORCID,Baddour Natalie1ORCID,Lemaire Edward D.23ORCID

Affiliation:

1. Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, Canada

2. The Ottawa Hospital Rehabilitation Centre, Ottawa Hospital Research Institute, Ottawa, Canada

3. Faculty of Medicine, University of Ottawa, Ottawa, Canada

Abstract

People with a limb loss at the level of the hip or pelvis have the most difficulty returning to walking compared with those with a lower amputation. This is because their prosthesis must replace the hip, knee, and ankle joints. An adjustable hip-disarticulation/hemipelvectomy prosthesis simulator that allows able-bodied individuals to wear and assess a prosthesis can help researchers and manufacturers when designing new prosthetic components (ie, hip joints). SolidWorks computer-aided design software was used to design and simulate an adapter that can connect prosthetic components to an off-the-shelf hip abduction orthosis. The adapter was made of 1020 stainless steel and aluminium 6061-T3 with a yield strength of 276 MPa. To confirm that this adapter is strong and safe for ambulation, mechanical testing was performed using an INSTRON machine. The maximum loads generated in any activity were chosen according to the International Organization for Standardization 15032:2000 standard for hip disarticulation external prostheses. The designed adapter allowed frontal, lateral, or distal mounting of different prosthetic hip joints. Mechanical testing confirmed that the new adapter can withstand forces and moments experienced during ambulation. The hip disarticulation/hemipelvectomy prosthesis simulator is easy to use and adjustable based on each person’s height and pelvic width. Furthermore, this simulator would assist rehabilitation practitioners in experiencing the use of hip-level prostheses and give them a better understanding of people using such technologies. The next step in this project is to evaluate able-bodied participant gait while using this hip simulator prosthesis with different hip joints.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Rehabilitation,Health Professions (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3