Decontamination of Actinide-contaminated Injured Skin with Ca-DTPA Products Using an Ex Vivo Rat Skin Model

Author:

Van der Meeren Anne1,Devilliers Karine1,Griffiths Nina1,Chaplault Anne-Sophie1,Defrance Martine1,Ducouret Gaëtan,Pasteur Michaël2,Laroche Pierre3,Caire-Maurisier François2

Affiliation:

1. Laboratory of Radio Toxicology, CEA, Paris-Saclay University, 91297 Arpajon, France

2. Pharmacie Centrale des Armées, Fleury les Aubrais, France

3. Direction of Health, Security, Environment & Radioprotection, Orano, Châtillon, France.

Abstract

Abstract Skin contamination by α-emitting actinides such as plutonium and americium is a risk for workers during nuclear fuel production and reactor decommissioning. Decontamination of skin is an important medical countermeasure to limit potential internal contamination, particularly in the case of injured skin. Current recommendations include undressing of the victim followed by skin washing using soap or chelating agents, such as diethylene triamine pentaacetic acid (DTPA). The goal of the present work is to assess the efficacy of a novel Ca-DTPA loaded gel to decontaminate injured skin exposed to plutonium or americium as compared to recommended treatments. For decontaminant testing on injured skin, whole body skin was obtained from euthanized rats and lesions created using a metallic brush. Delimited test areas were contaminated with plutonium or americium solutions of known properties. Various protocols were tested including time before contamination, duration of gel application, washing steps, as well as the concomitant addition or not of dressings. Activity was measured in each decontamination product and in skin. Data indicate that healthy skin was easier to decontaminate than damaged skin. On injured skin, we demonstrated an increased decontamination efficacy of the Ca-DTPA gel formulation as compared to the solution. Importantly, gel application alone was effective, and further gel applications could be used for residual activity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3