Prediction Model for Defects in Lead and Lead-free Aprons

Author:

Kellens Pieter-Jan1,De Hauwere An1,Bayart Sandrine1,Bacher Klaus1,Loeys Tom2

Affiliation:

1. Medical Physics, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium

2. Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, 9000 Ghent, Belgium.

Abstract

Abstract Personal radiation protective equipment (PRPE) is prone to defects in the attenuating layers, resulting in inadequate protection. Hence, quality control (QC) of PRPE is needed to assess its integrity. Unfortunately, QC of PRPE is laborious and time consuming. This study aimed to predict the QC outcome of PRPE without x-ray imaging based on readily available predictors. PRPE QC data of a general hospital from 2018 to 2023 was used for both prediction models based on logistic regression and random forests (RF). The data were divided into a training set containing all data from 2018 to 2022 and a holdout set containing the data from 2023. The predictors were brand, age, size, type, visual defects, and department. The prediction performances were compared using confusion matrices and visualized with receiver operating characteristic (ROC) curves. Prediction accuracies of at least 80% were achieved. Further model tuning especially improved the RF model to a precision up to 97% with a sensitivity of 80% and specificity of 86%. All predictors, except visual defects, significantly impacted the probability of passing. The predictor brand had the largest contribution to the predictive performance. The difference in pass probability between the best-performing and the worst-performing brand was 35.1%. The results highlight the potential of predicting PRPE QC outcome without x rays. The proposed prediction approach is a significant contribution to an effective QC strategy by reducing time consuming x-ray QC tests and focusing on garments with higher probability of being defective. Further research is recommended.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference18 articles.

1. Material characterization and Monte Carlo simulation of lead and non-lead x-ray shielding materials;Radiat Phys Chem,2020

2. Quality assurance of personal radiation shield for kilovoltage photon: a multicentre experience;Risk Manage Healthcare Policy,2021

3. Random forests;Machine Learn,2001

4. Primary operator radiation dose in the cardiac catheter laboratory,2021

5. Retrospective evaluation of lens injuries and dose: relid study;J Am Coll Cardiol,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3