Estimate of the Deterministic Neutron RBE for Radiation-induced Pseudo-Pelger Huët Cell Formation

Author:

Goans R. E.,Iddins C. J.1,Goans R. E.2

Affiliation:

1. Radiation Emergency Assistance Center/Training Site, Oak Ridge, TN

2. LMU Debusk School of Medicine, Harrogate, TN

Abstract

Abstract Using archival peripheral blood slides from radiation accident patients, we have recently described the pseudo-Pelger Huët anomaly (PPHA) in neutrophils as a new radiation-induced biomarker, useful for dosimetry not only immediately after a radiation incident but also potentially helpful as a tool in retrospective dosimetry. In conjunction with the Radiation Accident Registry at the Radiation Emergency Assistance Center/Training Site (REAC/TS), the frequency of PPHA cells has been compared from selected patients in the Y-12 criticality accident in Oak Ridge, TN, in 1958 and from the patient in the 1971 60Co accident at the USAEC Comparative Animal Research Laboratory (CARL), also in Oak Ridge. Patients A, C, and D in the Y-12 accident are described as having an average dose of 2.53 ± 0.14 Gy gamma + 0.90 ± 0.05 Gy neutron, while the patient in the CARL event had 2.6 Gy gamma dose from event reconstruction. Since the average gamma energies are almost identical in these two cohorts, it is possible to estimate the deterministic neutron relative biological effectiveness (RBEd) for PPHA formation in a criticality event. The neutron RBEd calculated in this way is an average value over the neutron fission energy spectrum and is found to be 3.4 ± 0.6, in good agreement with the currently recommended value of 3 for acute neutron dose to red marrow.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference10 articles.

1. Radiation accident dosimetry;Nucl Instr Meth,1980

2. Manhattan Project 1940s research on the prompt fission neutron spectrum;Front Phys

3. Coefficient of agreement for nominal scales;Educ Psychol Meas,1960

4. Understanding and recognizing the Pelger-Huet anomaly;Am J Clin Pathol,2012

5. Appearance pf pseudo-Pelger Hue anomaly after accidental exposure to ionizing radiation in vivo;Health Phys,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3