Saccharomyces Cerevisiae as a Model Organism for Retrospective Impedance Biodosimetry

Author:

Hassan Amna,Atkinson Kirk D.1

Affiliation:

1. Ontario Tech University, Department of Energy and Nuclear Engineering, 2000 Simcoe St. N., Oshawa, ON, Canada.

Abstract

Abstract Previous studies have shown that measuring changes in electrical impedance that follow radiation-induced suppression of metabolic activity in irradiated yeast cells can be used to determine radiation dose. The current work investigates the radiation response of Saccharomyces cerevisiae cells by using metabolic activity of cells as a damage indicator. Impedance biodosimetry was examined as a method to evaluate the radiation response of yeast cells. Active lab-grade dry yeast cells were used as the biological material as these samples are simple to handle and have a long shelf-life. A novel dosimeter design has been developed with a strict fabrication method and measurement procedure to ensure reproducible measurements are possible. Prepared yeast samples were irradiated to doses from 0.5 to 8 Gy using a 137Cs source, and a dose response curve was developed that showed a linear relationship of dose with changes in impedance measurements. Fading of the impedance signal was also investigated, and it was shown that there was no noticeable fading of the impedance signal over a period of 7 mo. Finally, the lowest detectable limit measured using this methodology was determined to be 300 mGy. This work presents an alternative retrospective dosimetry technique that can be used at a high scale and low cost following large-scale radiological accidents.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3