Comparison of MCNP and Microshield Dose Savings Determinations for Remote Methods of Transuranic Contamination Characterization

Author:

Freilich Justina A. M.,Palmer Camille J.1

Affiliation:

1. Oregon State University, School of Nuclear Science and Engineering, 151 Batcheller Hall, 1791 SW Campus Way, Corvallis, OR 97331.

Abstract

The maturation of robotic and remote systems presents opportunities to expand the use of technologies that have typically been restricted to high-dose/high-risk nuclear work for moderate- or low-risk work to further reduce radiation exposure to workers. This study quantifies the potential dose savings achieved through the use of robotic techniques for characterizing transuranic-contaminated waste items and compares dose estimates from a simplistic, user-friendly deterministic radiation transport code and a more robust, complex Monte Carlo code. Three scenarios of transuranic-contaminated waste items described in published reports are modeled using representative source geometries in MicroShield and MCNP radiation transport codes. Estimated dose rates are determined at points ranging from 30 cm to 300 cm from the face of the waste item to represent the increase in distance allowed by robotic or remote system implementation for characterization activities. The dose rate savings are then converted to detriment cost savings using a dollar-per-person-dose conversion factor to provide a financial context. The radiation transport simulations show no consistent bias in estimated dose rate by varying simulation methodology or using geometrical simplifications—in some cases, MicroShield produces higher dose rate estimates while MCNP estimates are higher in other cases. In the MCNP simulations, the volume source geometry consistently produces a higher dose rate than the slab source geometry, but the MicroShield dose rate estimates do not display the same trend. Dose savings range from 1.60 × 10−5 μSv h−1 to 1.75 × 101 μSv h−1 with associated detriment cost savings from < 0.010 USD/person-h to 14 USD/person-h.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference3 articles.

1. Cost-benefit analysis and radiation protection;IAEA Bull,1980

2. Comparison of deterministic and Monte Carlo methods in shielding design;Radiat Protect Dosim,2005

3. Robotic development for the nuclear environment: challenges and strategy;Robotics,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3