Dose Estimation for Extravasation of 177Lu, 99mTc, and 18F

Author:

Tsorxe Innocent Y.,Hayes Robert B.1

Affiliation:

1. North Carolina State University, Raleigh, NC 27695

Abstract

Abstract Extravasation is the situation in which a nuclear medicine injection deposits some fraction of its radioactivity into the soft tissue rather than the bloodstream and may result in a large local radiation dose to tissue. An understanding of localized radiation dose from such unexpected events can be an important aspect of clinical radiation protection. The aim of this study was to estimate and assess absorbed radiation dose to localized soft tissue for hypothetical scenarios of radiopharmaceutical extravasation. Specifically, the goal was to understand whether a radiopharmaceutical extravasation could exceed the US Nuclear Regulatory Commission’s medical event reporting limit of 0.5 Sv dose equivalent to tissue or levels at which tissue damage would be anticipated (1.0 Sv dose equivalent). We used the GATE Monte Carlo simulation software to calculate self-dose to spherical volumes containing uniformly distributed amounts of common radiopharmaceutical isotopes. Simulated volumes, radioactivity levels, and effective half-lives represented real-world nuclear medicine procedures. Chosen scenarios consisted of 50 mCi and 100 mCi 177Lu within 20 cm3 and 40 cm3 tissue volumes and a 60 min biological clearance half-time (59.6 min effective half-life), 6 mCi and 12 mCi 99mTc within 1 cm3 and 5 cm3 tissue volumes and a 120 min biological clearance half-time (90 min effective half-life), and 3 mCi and 6 mCi 18F within 1 cm3 and 5 cm3 tissue volumes with a 30 min biological clearance half-time (23.6 min effective half-life). We calculated absorbed doses to be between 5.5 Gy and 23.5 Gy for 177Lu, between 0.9 Gy and 12.4 Gy for 99mTc, and between 1.5 Gy and 16.2 Gy for 18F. Radiopharmaceutical extravasations can result in tissue doses that surpass both medical event reporting limits and levels at which deterministic effects are expected. Radiation safety programs should include identification, mitigation, dosimetry, and documentation of significant extravasation events.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Health, Toxicology and Mutagenesis,Radiology, Nuclear Medicine and imaging,Epidemiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3